98%
921
2 minutes
20
The endogenous stimulating molecule melatonin (N-acetyl-5-methoxytryptamine, MT) has an important function in mitigating the impact of multiple abiotic stressors. However, the ameliorating effect of MT on chromium (Cr) stress and its mechanisms remains unclear. Therefore, the present study aimed to clarify the mitigating effect of exogenous MT (0 μM and 100 μM) on wheat seedlings under Cr (0 μM and 50 μM) stress stemming from the growth and physiological characteristics, phytochelatin (PC) biosynthesis, Cr subcellular distribution, and antioxidant system of the plants in these treatments. The results showed that endogenous MT application significantly promoted plant growth and improved root morphology of wheat seedlings under Cr stress due to decreased Cr and reactive oxygen species (ROS) accumulation in both roots and leaves. Accumulation and transport of Cr from roots to leaves were reduced by MT, because enhanced vacuolar sequestration via upregulated PC accumulation, took place, derived from the fact that MT upregulated the expression of key genes for PC synthesis (TaPCS and Taγ-ECS). Furthermore, MT pre-treatment alleviated Cr-induced oxidative damage by diminishing lipid peroxidation and cell apoptosis, profiting from the enhanced scavenging ability of ROS as a result of the MT-induced increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the related encoding gene expression levels of TaSOD2, TaCAT, TaAPX, and TaGR. In conclusion, endogenous MT application improved the growth traits, antioxidant system, and decreased Cr accumulation especially at the leaf level in wheat seedlings under Cr stress mainly through enhancing antioxidant enzyme activities and altering Cr subcellular distribution via strengthening PC biosynthesis. The mechanisms of MT-induced plant tolerance to Cr stress could help develop new strategies for secure crop production in Cr-polluted soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-25903-y | DOI Listing |
Pestic Biochem Physiol
November 2025
College of Plant Protection, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, China.
Background: Prothioconazole (PTC), a triazole fungicide, and its metabolite prothioconazole-desthio (dPTC) present potential phytotoxic risks in crops. However, the mechanisms governing their uptake and detoxification in wheat remain unknown. This study aimed to determine how macronutrients and endogenous signaling compounds regulate PTC absorption and metabolism in wheat seedlings.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2025
State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.
Stripe rust ( f. sp. ) poses a major threat to Chinese wheat production.
View Article and Find Full Text PDFNew Phytol
August 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Plant cuticular waxes function as a protective barrier to mitigate environmental stresses, especially water deficit, although the molecular mechanisms and natural genetic variations underlying wax accumulation in crops remain unclear. Our genome-wide association study (GWAS) of the contents of cuticular wax components in wheat seedlings demonstrated that allelic variations in TaFAR5, encoding a fatty acyl-CoA reductase, contribute to the differences in leaf cuticular wax accumulation. Molecular and transgenic analyses revealed that variations in the TaFAR5 promoter affect the binding affinity between cis-regulatory elements and several transcription factors, including TaLBD16, TaERF12, TaNAC2, TaWRKY2, TaMYBC1, and TaNAC6, consequently modulating TaFAR5 expression.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
College of Life Science, State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
Fullerene-based nanomaterials have been attested to enhance plant responses to abiotic stress, crop development, and crop production. Recently, quaternary ammonium iminofullerenes (IFQA), as nanobiostimulants, have played a positive role in protecting maize against drought stress through reactive oxygen species (ROS) neutralization and maintenance of energy status. However, there is a lack of knowledge regarding IFQA-mediated molecular mechanism and its efficacy in mitochondrial homeostasis in drought-stress maize seedlings.
View Article and Find Full Text PDF