98%
921
2 minutes
20
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts. Additionally, extremely dense cases reported an increased risk of cancer compared to low-density breasts. This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms (FFDM) as data augmentation during breast mass detection model training. To this end, a total of five cycle-consistent GAN (CycleGAN) models using three FFDM datasets were trained for low-to-high-density image translation in high-resolution mammograms. The training images were split by breast density BI-RADS categories, being almost entirely fatty and extremely dense breasts. Our results showed that the proposed data augmentation technique improved the sensitivity and precision of mass detection in models trained with small datasets and improved the domain generalization of the models trained with large databases. In addition, the clinical realism of the synthetic images was evaluated in a reader study involving two expert radiologists and one surgical oncologist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899892 | PMC |
http://dx.doi.org/10.3389/fonc.2022.1044496 | DOI Listing |
J Occup Med Toxicol
September 2025
Occupational Medicine, Antioch Medical Center, Kaiser Permanente, 4501 Sand Creek Road, Antioch, CA, 94531, USA.
Background: This study examines trends in delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) positivity rates in pre-employment urine drug screenings at a single university-based hospital occupational medicine clinic from 2017 to 2022, following California's recreational cannabis legalization in 2016, with sales beginning officially on January 1, 2018.
Methods: Retrospective analysis of 21,546 de-identified urine drug screenings from 2017 to 2022 was conducted. Initial screening used instant urine drug immunoassays (50 ng/mL cutoff for THC-COOH), followed by confirmatory gas chromatography-mass spectrometry (15 ng/mL cutoff).
Microb Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.
Nat Metab
September 2025
Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA.
The essential cofactor coenzyme A (CoASH) and its thioester derivatives (acyl-CoAs) have pivotal roles in cellular metabolism. However, the mechanism by which different acyl-CoAs are accurately partitioned into different subcellular compartments to support site-specific reactions, and the physiological impact of such compartmentalization, remain poorly understood. Here, we report an optimized liquid chromatography-mass spectrometry-based pan-chain acyl-CoA extraction and profiling method that enables a robust detection of 33 cellular and 23 mitochondrial acyl-CoAs from cultured human cells.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Global Health Economics Centre, Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Background: Artificial intelligence (AI) algorithms offer an effective solution to alleviate the burden of diabetic retinopathy (DR) screening in public health settings. However, there are challenges in translating diagnostic performance and its application when deployed in real-world conditions.
Objective: This study aimed to assess the technical feasibility of integration and diagnostic performance of validated DR screening (DRS) AI algorithms in real-world outpatient public health settings.