J Med Imaging (Bellingham)
November 2025
Purpose: Deep generative models and synthetic data generation have become essential for advancing computer-assisted diagnosis and treatment. We explore one such emerging and particularly promising application of deep generative models, namely, the generation of virtual contrast enhancement. This allows to predict and simulate contrast enhancement in breast magnetic resonance imaging (MRI) without physical contrast agent injection, thereby unlocking lesion localization and categorization even in patient populations where the lengthy, costly, and invasive process of physical contrast agent injection is contraindicated.
View Article and Find Full Text PDFProstate cancer (PCa) is currently the second most prevalent cancer among men. Accurate diagnosis of PCa can provide effective treatment for patients and reduce mortality. Previous works have merely focused on either lesion detection or lesion classification of PCa from magnetic resonance imaging (MRI).
View Article and Find Full Text PDFArtificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced MRI cases, including expert annotations of primary tumors and non-mass-enhanced regions. The dataset integrates imaging data from four collections in The Cancer Imaging Archive (TCIA), where only 163 cases with expert segmentations were initially available.
View Article and Find Full Text PDFDespite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. This paper describes the FUTURE-AI framework, which provides guidance for the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI Consortium was founded in 2021 and comprises 117 interdisciplinary experts from 50 countries representing all continents, including AI scientists, clinical researchers, biomedical ethicists, and social scientists.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2023
Purpose: Deep learning has shown great promise as the backbone of clinical decision support systems. Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications.
View Article and Find Full Text PDFComputer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts.
View Article and Find Full Text PDFMed Image Anal
February 2023
The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions.
View Article and Find Full Text PDF