98%
921
2 minutes
20
Purpose: Deep learning has shown great promise as the backbone of clinical decision support systems. Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications. To reduce this entry barrier, we explore generative model sharing to allow more researchers to access, generate, and benefit from synthetic data.
Approach: We propose , a one-stop shop for pretrained generative models implemented as an open-source framework-agnostic Python library. After gathering end-user requirements, design decisions based on usability, technical feasibility, and scalability are formulated. Subsequently, we implement based on modular components for generative model (i) execution, (ii) visualization, (iii) search & ranking, and (iv) contribution. We integrate pretrained models with applications across modalities such as mammography, endoscopy, x-ray, and MRI.
Results: The scalability and design of the library are demonstrated by its growing number of integrated and readily-usable pretrained generative models, which include 21 models utilizing nine different generative adversarial network architectures trained on 11 different datasets. We further analyze three applications, which include (a) enabling community-wide sharing of restricted data, (b) investigating generative model evaluation metrics, and (c) improving clinical downstream tasks. In (b), we extract Fréchet inception distances (FID) demonstrating FID variability based on image normalization and radiology-specific feature extractors.
Conclusion: allows researchers and developers to create, increase, and domain-adapt their training data in just a few lines of code. Capable of enriching and accelerating the development of clinical machine learning models, we show 's viability as platform for generative model sharing. Our multimodel synthetic data experiments uncover standards for assessing and reporting metrics, such as FID, in image synthesis studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940031 | PMC |
http://dx.doi.org/10.1117/1.JMI.10.6.061403 | DOI Listing |
Comput Biol Med
September 2025
INSIGNEO Institute for in silico medicine, University of Sheffield, UK; School of Mechanical, Aerospace and Civil Engineering, University of Sheffield, UK. Electronic address:
Modelling cardiovascular disease is at the forefront of efforts to use computational tools to assist in the analysis and forecasting of an individual's state of health. To build trust in such tools, it is crucial to understand how different approaches perform when applied to a nominally identical scenario, both singularly and across a population. To examine such differences, we have studied the flow in aneurysms located on the internal carotid artery and middle cerebral artery using the commercial solver Ansys CFX and the open-source code HemeLB.
View Article and Find Full Text PDFStem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFArch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.
Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.
Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.