Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is currently the leading cause of death by any bacterial infection. The mycolic acid layer of the cell wall is essential for viability and virulence, and the enzymes responsible for its synthesis are therefore front line targets for antimycobacterial drug development. Polyketide synthase 13 (Pks13) is a module comprised of a closely symmetric parallel dimer of chains, each encoding several enzymatic and transport functions, that carries out the condensation of two different very long chain fatty acids to produce mycolic acids that are essential components of the mycobacterial cell wall. Consequently individual enzymatic domains of Pks13 are targets for antimycobacterial drug development. To understand this machinery, we sought to determine the structure and domain trajectories of the dimeric multi-enzyme Pks13, a 2×198,426 Dalton complex, from protein purified endogenously from mycobacteria under normal growth conditions, to capture it with normal substrates bound trapped 'in action'. Structures of the multi-domain assembly revealed by cryogenic electron microscopy (cryoEM) define the ketosynthase (KS), linker, and acyltransferase (AT) domains, each at atomic resolution (1.8Å), with bound substrates defined at 2.4Å and 2.9Å resolution. Image classification reveals two distinct structures with alternate locations of the N-terminal acyl carrier protein (termed ACP1a, ACP1b) seen at 3.6Å and 4.6Å resolution respectively. These two structures suggest plausible intermediate states, related by a ~60Å movement of ACP1, on the pathway for substrate delivery from the fatty acyl-ACP ligase (FadD32) to the ketosynthase domain. The linking sequence between ACP1 and the KS includes an 11 amino acid sequence with 6 negatively charged side chains that lies in different positively charged grooves on the KS in ACP1a versus ACP1b structures. This charge complementarity between the extended chain and the grooves suggests some stabilization of these two distinct orientations. Other domains are visible at lower resolution and indicate flexibility relative to the KS-AT core. The chemical structures of three bound endogenous long chain fatty acid substrates with their proximal regions defined in the structures were determined by electrospray ionization mass spectrometry. The domain proximities were probed by chemical cross-linking and identified by mass spectrometry. These were incorporated into integrative structure modeling to define multiple domain configurations that transport the very long fatty acid chains throughout the multistep Pks13 mediated synthetic pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900942PMC
http://dx.doi.org/10.1101/2023.01.27.525930DOI Listing

Publication Analysis

Top Keywords

polyketide synthase
8
synthase pks13
8
cell wall
8
targets antimycobacterial
8
antimycobacterial drug
8
drug development
8
long chain
8
chain fatty
8
fatty acid
8
mass spectrometry
8

Similar Publications

Unravelling the Functional Diversity of Type III Polyketide Synthases in Fungi.

Angew Chem Int Ed Engl

September 2025

Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.

Type III polyketide synthases (T3PKSs) are enzymes that produce diverse compounds of ecological and clinical importance. While well-studied in plants, only a handful of T3PKSs from fungi have been characterised to date. Here, we developed a comprehensive workflow for kingdom-wide characterisation of T3PKSs.

View Article and Find Full Text PDF

Exophiala dermatitidis is a polyextremotolerant black yeast species. E. dermatitidis produces 1,8 dihydroxynaphthalene (DHN) melanin via the Polyketide Synthase 1 (PKS1) pathway enabling it to survive harmful conditions.

View Article and Find Full Text PDF

Discovery of Cytotoxic Barbiturate-Bridged Dimeric Chrolactomycins from TX15.

Org Lett

September 2025

Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.

Six new spirotetronate polyketides, chrolactomycins A-F (-), and the known chrolactomycin () were isolated and identified from TX15. Chrolactomycins D-F (-) feature an unprecedented dimeric skeleton bridged by a rare barbiturate unit. Sequencing and characterization of a type I polyketide synthase biosynthetic gene cluster led to the proposal of a biosynthetic pathway for -.

View Article and Find Full Text PDF

Leymus chinensis is a perennial grass with remarkable adaptability and forage quality. It is the dominant species on the saline-alkali land in the Songnen Plain in Northeast China, where two ecotypes naturally grow: the grey-green (GG) and yellow-green (YG) genotypes, named after the leaf color. However, the differences in morphology and adaptability between the GG and YG ecotypes are not elucidated.

View Article and Find Full Text PDF

The value of microbial natural product pathways extends beyond the chemicals they produce, as the enzymes they encode can be harnessed as biocatalysts. Microbial type II polyketide synthases (PKSs) are particularly noteworthy, as these enzyme assemblies produce complex polyaromatic pharmacophores. Combinatorial biosynthesis with type II PKSs has been described as a promising route for accessing never-before-seen bioactive molecules, but this potential is stymied in part by the lack of functionally compatible noncognate proteins across type II PKS systems.

View Article and Find Full Text PDF