Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a vital oncogene, a variety of inhibitors targeting Stat3 and its various upstream signaling pathways has been explored. Since small molecules, peptidomimetics and other peptide inhibitors usually lead to side effects and difficult administration, gene therapeutics that have characteristics of low toxicity and high targeting, make them an attractive alternative for targeting Stat3. A major challenge to this approach is the lack of safe delivery systems for in-vivo applications. Among the various siRNA delivery systems, nanoparticles emerge as a new tool for gene delivery with high biocompatibility, low cost, and minimal toxicity. In this study, we developed a graphene oxide (GO)-based nanocarrier, GO-polyethyleneimine (PEI)-polyethylene glycol (PEG)-folic acid (FA), as a tool targeting for Stat3-specific shRNA to mouse hepatoma cells in vitro and in vivo . Infrared photothermal therapy was combined in vivo since GO has the characteristic of infrared absorbability. Our results suggest a significant tumor growth inhibition after treatment with GO-PEI-PEG-FA- sh-Stat3 combined with infrared photothermal therapy. Thus, GO-PEI-PEG-FA appears to be a novel nano-transformer that could be used in the clinics in future.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000001461DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
combined infrared
8
targeting stat3
8
delivery systems
8
infrared photothermal
8
photothermal therapy
8
stat3 shrna
4
delivery
4
shrna delivery
4
delivery folate
4

Similar Publications

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF

Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.

View Article and Find Full Text PDF

Graphene oxide and its derivatives have unique physical and chemical properties with applications in many different fields. However, their biological effects and mechanisms of intracellular toxicity have not been completely clarified. In this study, we investigated the cytotoxic and autophagic activities of graphene oxide and its derivatives in A549 human lung carcinoma cells.

View Article and Find Full Text PDF

A mannose-functionalized carbon dot and boronic acid-graphene oxide nanocomposite fluorescent probe for detection.

Anal Methods

September 2025

State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.

Current detection methods for often suffer from lengthy procedures, significant technical limitations, high probe costs, and poor long-term storage stability. Herein, an "on-off-on" fluorescent probe is developed based on mannose-lectin recognition for the rapid and quantitative detection of . The probe utilizes mannose-grafted carbon dots (g-CDs-M), which specifically recognize through interaction with lectins on its surface.

View Article and Find Full Text PDF

Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.

View Article and Find Full Text PDF