Precision Modification of Monolayer Transition Metal Dichalcogenides via Environmental E-Beam Patterning.

ACS Nano

Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th Street, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Layered Transition Metal Dichalcogenides (TMDs) are an important class of materials that exhibit a wide variety of optoelectronic properties. The ability to spatially tailor their expansive property-space (e.g., conduction behavior, optical emission, surface interactions) is of special interest for applications including, but not limited to, sensing, bioelectronics, and spintronics/valleytronics. Current methods of property modulation focus on the modification of the basal surfaces and edge sites of the TMDs by the introduction of defects, functionalization with organic or inorganic moieties, alloying, heterostructure formation, and phase engineering. A majority of these methods lack the resolution for the development of next-generation nanoscale devices or are limited in the types of functionalities useful for efficient TMD property modification. In this study, we utilize electron-beam patterning on monolayer TMDs (MoSe, WSe and MoS) in the presence of a pressure-controlled atmosphere of water vapor within an environmental scanning electron microscope (ESEM). A series of parametric studies show local optical and electronic property modification depending on acceleration voltage, beam current, pressure, and electron dose. The ultimate pattern resolution achieved is 67 ± 9 nm. Raman and photoluminescence spectroscopies coupled with Kelvin Probe Force Microscopy reveal electron dose-dependent p-doping in the patterned regions, which we attribute to functionalization from the products of water vapor radiolysis (oxygen and hydroxyl groups). The modulation of the work function through patterning matches well with Density Functional Theory modeling. Finally, post-functionalization of the patterned areas with an organic fluorophore demonstrates a robust method to achieve nanoscale functionalization with high fidelity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c11503DOI Listing

Publication Analysis

Top Keywords

transition metal
8
metal dichalcogenides
8
property modification
8
water vapor
8
precision modification
4
modification monolayer
4
monolayer transition
4
dichalcogenides environmental
4
environmental e-beam
4
e-beam patterning
4

Similar Publications

Construction of an Ag-functionalized structural color hydrogel sensor for colorimetric detection of glutathione.

Mikrochim Acta

September 2025

Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.

An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF