98%
921
2 minutes
20
Background: The AP2/ERF gene family is a superfamily of transcription factors that are important in the response of plants to abiotic stress and development. However, comprehensive research of the AP2/ERF genes in the Solanaceae family is lacking.
Results: Here, we updated the annotation of AP2/ERF genes in the genomes of eight Solanaceae species, as well as Arabidopsis thaliana and Oryza sativa. We identified 2,195 AP2/ERF genes, of which 368 (17%) were newly identified. Based on phylogenetic analyses, we observed expansion of the copy number of these genes, especially those belonging to specific Ethylene-Responsive Factor (ERF) subgroups of the Solanaceae. From the results of chromosomal location and synteny analyses, we identified that the AP2/ERF genes of the pepper (Capsicum annuum), the tomato (Solanum lycopersicum), and the potato (Solanum tuberosum) belonging to ERF subgroups form a tandem array and most of them are species-specific without orthologs in other species, which has led to differentiation of AP2/ERF gene repertory among Solanaceae. We suggest that these genes mainly emerged through recent gene duplication after the divergence of these species. Transcriptome analyses showed that the genes have a putative function in the response of the pepper and tomato to abiotic stress, especially those in ERF subgroups.
Conclusions: Our findings will provide comprehensive information on AP2/ERF genes and insights into the structural, evolutionary, and functional understanding of the role of these genes in the Solanaceae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869560 | PMC |
http://dx.doi.org/10.1186/s12870-022-04017-6 | DOI Listing |
J Appl Genet
September 2025
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.
Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFPhysiol Plant
September 2025
College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.
View Article and Find Full Text PDFBMC Genomics
September 2025
Wheat Research Center, Henan Institute of Science and Technology, Xinxiang, 453000, China.
Background: As wheat is a globally important staple crop, the molecular regulatory network underlying heterosis in wheat remains incompletely understood. The flag leaf is the primary source of photoassimilates during grain filling and plays a crucial role in yield formation. However, the genetic mechanisms linking flag leaf development to heterosis are still unclear.
View Article and Find Full Text PDFGenes (Basel)
August 2025
Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150088, China.
Low-temperature stress during the grain-filling stage negatively affects rice grain quality and yield. Understanding the physiological and molecular mechanisms underlying cold tolerance is critical for breeding rice varieties with improved resilience. In this study, eight rice varieties with differential cold tolerance-LD1603, 13108, LD18, and 4-1021 (cold-tolerant) and LD3, LD4, LD121, and LD1604 (cold-sensitive)-were subjected to 17.
View Article and Find Full Text PDF