Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-temperature stress during the grain-filling stage negatively affects rice grain quality and yield. Understanding the physiological and molecular mechanisms underlying cold tolerance is critical for breeding rice varieties with improved resilience. In this study, eight rice varieties with differential cold tolerance-LD1603, 13108, LD18, and 4-1021 (cold-tolerant) and LD3, LD4, LD121, and LD1604 (cold-sensitive)-were subjected to 17.5 °C low-temperature stress during grain filling in a naturally illuminated phytotron. Amylose and protein content, as well as taste quality, were analyzed. RNA sequencing was performed to identify differentially expressed genes and transcription factors associated with cold response. Under low-temperature stress, amylose and protein content significantly increased in all eight varieties. The taste quality of cold-sensitive varieties declined markedly, whereas cold-tolerant varieties maintained higher and more stable taste quality values. Transcriptomic analysis revealed that key enzyme genes (, , , , , and ) in the starch and sucrose metabolism pathway were significantly upregulated in cold-tolerant varieties (LD18 and 4-1021), but suppressed in cold-sensitive varieties. Several cold-responsive transcription factors from the NAC, WRKY, AP2/ERF, MYB, and bZIP families were also identified. Weighted gene co-expression network analysis (WGCNA) further revealed hub TFs (OsWRKY1, OsWRKY24, OsWRKY53, and OsMYB4) and structural genes ( and ) potentially involved in cold tolerance during grain filling. This study enhanced our understanding of the molecular response to low temperature during rice grain filling and provided candidate genes for developing cold-tolerant rice varieties through molecular breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385969PMC
http://dx.doi.org/10.3390/genes16080950DOI Listing

Publication Analysis

Top Keywords

rice varieties
16
low-temperature stress
16
cold tolerance
12
grain filling
12
taste quality
12
varieties
9
varieties differential
8
differential cold
8
stress grain-filling
8
grain-filling stage
8

Similar Publications

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

as the Emerging Causal Agent of Novel Bacterial Leaf Blight in Rice: Characterization and Management in Anhui, China.

Plant Dis

September 2025

Anhui Academy of Agricultural Sciences, Institute of Plant Protection and Agro-Products Safety, Nongkenan 40, Luyang District, Hefei, Anhui province,China, Hefei, Anhui Province, China, 230031;

Since its emergence in 2020, a novel bacterial leaf blight caused by Pantoea ananatis has posed a serious threat to rice production in Anhui Province, China. Through verification via Koch's postulates and three years of field monitoring, P. ananatis strain HQ01 was identified as the dominant pathogen, exhibiting high virulence even at low inoculum concentrations (10² CFU/mL).

View Article and Find Full Text PDF

Chitosan is a modified natural biopolymer obtained through the deacetylation of chitin, which is primarily found in the shells of crustaceans. Chitosan has recently attracted a lot of attention due to its possible use in the chemical, medical and food and industries. Due to its distinct biological activities and functional properties, its applications in the food industry are especially noteworthy.

View Article and Find Full Text PDF

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF