Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, microphysiological systems (MPS) have been developed to shorten the test period and reduce animal experiments for drug development. We examined cell sources for the liver-MPS, i.e., MPS mimicking liver function. For liver-MPS, liver-like cells with high liver functions are required. Cryo-preserved hepatocytes (cryoheps), the gold standard hepatocytes for in vitro drug development, present several disadvantages, including differences between lots due to individual donor variations or a limited cell supply from the same donor. As such, alternatives for cryoheps are sought. Hepatocyte-like cells derived from human induced pluripotent stem cells (hiPSC-Heps), hepatocytes derived from liver-humanized mice (PXB-cells), and human liver cancer cells (HepG2 cells) were examined as source candidates for liver-MPS. Gene expression levels of the major cytochrome P450 of hiPSC-Heps, PXB cells, and HepG2 cells were compared with 22 lots of cryoheps, and the activities of hiPSC-Heps were compared with 8 lots of cryopreserved hepatocytes. A focused DNA microarray was used for the global gene analysis of the liver-like characteristics of hiPSC-Heps, PXB-cells, cryoheps, and HepG2 cells. Gene expression data from the focused microarray were analyzed by principal component analysis, hierarchical clustering, and enrichment analysis. The results indicated the characteristics of individual hepatocyte cell source and raised their consideration points as an alternative cell source candidate for liver-MPS. The study contributes to the repetitive utilization of a robust in vitro hepatic assay system over long periods with stable functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867117PMC
http://dx.doi.org/10.3390/pharmaceutics15010055DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
cell sources
8
drug development
8
cells
8
cells hepg2
8
gene expression
8
compared lots
8
cell source
8
hepatocytes
5
cell
5

Similar Publications

Hyperlipidemia is a common chronic disease characterized by elevated levels of lipids in the blood. There is some evidence that suggests that berberine (BBR) might be beneficial for the treatment of hyperlipidemia. However, its low intestinal bioavailability limits its potential therapeutic action.

View Article and Find Full Text PDF

Background: (Benth.) Baker is a perennial shrub endemic to the Tibetan Plateau. Its seeds are traditional Tibetan medicine for treating jaundice, hepatitis, purulent tonsillitis, diphtheria, and parasitosis.

View Article and Find Full Text PDF

Exploring the effect of copper on the bioactivity of 8-quinolines: an and study.

Dalton Trans

September 2025

Biomedical Inorganic Chemistry Lab, Department of Chemical Sciences, University of Catania, v.le A. Doria 6, 95125, Catania, Italy.

Current anticancer therapy is challenged by the adaptability and resistance of tumor cells as well as limited drug selectivity that causes severe side effects. The scientific community maintains high interest in metal-based chemotherapeutic agents due to their unique interactions with cancer cells, potentially overcoming resistance mechanisms and exploiting the physiopathology of the tumour tissues. Copper, in particular, plays a dual role in cancer, both facilitating tumor progression and triggering cuproptosis, a copper-induced cell death mechanism.

View Article and Find Full Text PDF

Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.

View Article and Find Full Text PDF

To study the effects of calycosin on palmitic acid-induced HepG2 cells, as well as the potential mechanisms of action. Potential targets of calycosin for the alleviation of insulin resistance were predicted by network pharmacology. Glucose concentration in the culture medium was determined by the GOD-POD method.

View Article and Find Full Text PDF