98%
921
2 minutes
20
Chain elongation is a promising technology for production of medium-chain fatty acids (MCFAs). Granular activated carbon (GAC) is commonly used in anaerobic fermentation. Low level CHCl can inhibit methanogenesis and homoacetogenesis at the same time. However, the effect of them on chain elongation performance with highly enriched consortia and simple substrate (i.e., ethanol and acetate) was still unclear. Hence, the effects of CHCl and on MCFAs production and the microbial community was studied here. CHCl displayed fatal effect on chain elongation system when its concentration was higher than 0.1% v/v. 0.05% v/v CHCl was enough to inhibit homoacetogens and further decreased the caproate production efficiency without altering the core bacteria tremendously. GAC was found to be adverse for chain elongation with simple substrate (i.e., ethanol and acetate) and highly enriched microbial consortia dominated by Clostridium sensu stricto, less than 20% electrons were finally distributed in caproate. It might be attributed to other electron consuming activities induced by GAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.115324 | DOI Listing |
Bioresour Technol
September 2025
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:
This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key, Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
A dynamically crosslinked network VEC (vulcanized ESO and CA) was synthesized in situ via zinc acetate-catalyzed epoxy ring-opening between epoxidized soybean oil (ESO) and anhydrous citric acid (CA), then incorporated into polylactic acid (PLA)/polybutylene adipate terephthalate (PBAT) blends to enhance interfacial compatibility. The dynamic ester-exchange network acted as an intermediate phase, improving the integration of the flexible PBAT phase within the rigid PLA matrix. VEC content critically influenced mechanical properties, with in-situ crosslinking during dynamic vulcanization enhancing chain interactions and blend homogeneity.
View Article and Find Full Text PDFJ Mol Model
September 2025
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: This study systematically investigates the growth mechanism of nitrogen-doped graphene in a plasma environment, with a particular focus on the effects of temperature and hydrogen radicals on its structural evolution. The results reveal that, at 3000 K, the formation of nitrogen-doped graphene proceeds through three stages: carbon chain elongation, cyclization, and subsequent condensation into planar structures. During this process, nitrogen atoms are gradually incorporated into the carbon network, forming various doping configurations such as pyridinic-N, pyrrolic-N, and graphitic-N.
View Article and Find Full Text PDFJ Pestic Sci
August 2025
Graduate School of Agriculture, Kindai University.
This study focused on the chemical synthesis of auxin analogs, wherein a trifluoromethyl group was introduced near the carboxyl group in the side chain of natural and synthetic auxins, including IAA, NAA, IBA, 2,4-D, and 4-Cl-IAA. The effects of these synthetic compounds and natural auxins on plant growth regulation and callus growth were evaluated. In experiments with black gram, CF-IAA and 4-Cl-CF-IAA exhibited comparable effects to the parent compound, IAA.
View Article and Find Full Text PDFBioresour Technol
September 2025
Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
The recovery of lactic acid (LA) from the co-fermentation of food waste and waste activated sludge is shifting from feasibility studies to process optimization and predictive modeling. This study extends the widely used International Water Association Anaerobic Digestion Model No.1 (ADM1) by incorporating lactic acid bacteria-mediated pathways and adjusted stoichiometry to simulate LA generation from sugars, implemented in the GPS-X simulation platform.
View Article and Find Full Text PDF