98%
921
2 minutes
20
Zn-ion batteries with low cost and high safety have been regarded as a promising energy storage technology for grid storage. It is well-known that the metal anode surface orientation is vital to its reversibility. Herein, we demonstrate a facile route to control the Zn metal anode surface orientation through electrodeposition with electrolyte additives. An ultrathin (101)-inclined Zn metal anode (down to 2 μm) is obtained by adding a small amount of dimethyl sulfoxide (DMSO) in the ZnSO aqueous electrolyte. Scanning electron microscopy indicates the formation of flat terrace-like surfaces, while in situ optical observations demonstrate the reversible plating and stripping. DFT calculations reveal that the large reconstruction of the Zn-(101) surface with DMSO and HO adsorption to lower the interface energy is the main driving force for surface preference. Raman, XPS, and ToF-SIMS characterizations are performed to unveil the surface SEI components. Exceptional electrochemical performance is demonstrated for the (101)-inclined Zn metal anode in a half cell, which could cycle for 200 h with a low overpotential (<50 mV). The Zn||VO full cells are assembled, showing much better cycle performance for the 5 μm (101)-inclined Zn metal anode as compared to the commercialized 10 μm Zn metal foil, with a maximum specific capacity of 359 mAh/g and >170 mAh/g after over 300 cycles. We hope this study will spur further interest in the control of surface crystallographic orientation for a stable ultrathin Zn metal anode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18836 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye.
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.
View Article and Find Full Text PDFNat Mater
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
Anode-free lithium (Li) metal batteries are promising candidates for high-performance energy storage applications. Nonetheless, their translation into practical applications has been hindered by the slow kinetics and reversibility of Li plating and stripping on copper foils. Here we report a two-dimensional polyamide (2DPA)/lithiated Nafion (LN) interphase layer for anode-free Li metal batteries.
View Article and Find Full Text PDFNano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDFJ Org Chem
September 2025
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
The denitrogenation of tetrazoles is typically performed using transition-metal catalysts at high temperatures due to the inherent stability of the tetrazole group. In this work, we present, for the first time, an electrochemical method for denitrogenating tetrazoles at room temperature. This method employs a sacrificial zinc anode and a platinum cathode in a solvent mixture of acetonitrile and water under a constant current in an undivided cell.
View Article and Find Full Text PDF