Study on the Formation Mechanism of Acetaldehyde during the Low-Temperature Oxidation of Coal.

ACS Omega

College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The threshold dilution ratio of acetaldehyde is much larger than those of other odor compounds generated during the spontaneous combustion process and so it is the most important odorant. Studying the mechanism by which acetaldehyde is generated can provide the necessary theoretical support for acetaldehyde-based odor analysis. In the present work, the release of acetaldehyde was monitored while heating lignite, long-flame coal, and coking coal specimens under either air or nitrogen. The data show that acetaldehyde was primarily produced by the oxidation of active sites in the coal rather than by the pyrolysis of oxygen-containing functional groups. Based on quantum chemistry and coal-oxygen reaction theory, the transition state approach was used to further study the formation of acetaldehyde during the low-temperature oxidation of coal. Using density functional theory, three different coal molecule structures were modeled and optimized structures for acetaldehyde formation and the energies, bond lengths, and virtual frequencies of each reaction stagnation point were obtained at the B3LYP-D3/6-311G** and M062X-D3/Def2-TZVP levels. The results indicate that the low-temperature oxidation of coal to generate acetaldehyde involves the capture of H atoms from aliphatic side chains to generate peroxy radicals. These radicals then attack unsaturated C atoms through complex inversions to generate peroxides. In the third step of this process, the O-O single bonds in the peroxides break in response to thermal energy to form carbonyl groups. Finally, specific C-C or C-O bonds on the aliphatic side chains are thermally cleaved to generate acetaldehyde.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835530PMC
http://dx.doi.org/10.1021/acsomega.2c06910DOI Listing

Publication Analysis

Top Keywords

low-temperature oxidation
12
oxidation coal
12
acetaldehyde
9
study formation
8
mechanism acetaldehyde
8
acetaldehyde low-temperature
8
generate acetaldehyde
8
aliphatic side
8
side chains
8
coal
7

Similar Publications

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF

The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.

View Article and Find Full Text PDF