Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Near-infrared (NIR)-emitting ZnGaO:Cr (ZGO) persistent luminescent nanoparticles (PLNPs) have recently attracted considerable attention for diverse optical applications. The widespread use and promising potential of ZGO material in different applications arise from its prolonged post-excitation emission (several minutes to hours) that eliminates the need for continuous excitation and the possibility of its excitation in different spectral regions (X-rays and UV-vis). However, the lack of precise control over particle size/distribution and its poor water dispersibility and/or limited colloidal stability required for certain biological applications are the major bottlenecks that limit its practical applications. To address these fundamental limitations, herein, we have prepared oleic acid (OA)-stabilized ZGO PLNPs with controlled size (7-12 nm, depending on the type of alcohol used in synthesis) and monodispersity. A further increase in size (8-21 nm), with a concomitant increase in persistent luminescence, could be achieved using a seed-mediated approach, employing the as-prepared ZGO PLNPs from the first synthesis as the seed and growing layers of the same material by adding fresh precursors. To remove their surface oleate groups and make the nanoparticles hydrophilic, two surface modification strategies were evaluated: modification with only poly(acrylic acid) (PAA) as the hydrophilic capping agent and modification with either PAA or cysteamine (Cys) as the hydrophilic capping agent in conjunction with BF as the intermediate surface modifier. The latter surface modifications involving BF conferred long-term (60 days and longer) colloidal stability to the nanoparticles in aqueous media, which is related to their favorable ζ potential values. The proposed generalized strategy could be used to prepare different kinds of surface-functionalized PLNPs with control of size, hydrophilicity, and colloidal stability and enhanced/prolonged persistent luminescence for diverse potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c02871DOI Listing

Publication Analysis

Top Keywords

colloidal stability
16
persistent luminescent
8
luminescent nanoparticles
8
zgo plnps
8
persistent luminescence
8
hydrophilic capping
8
capping agent
8
applications
5
size
4
size control
4

Similar Publications

Construction of an Ag-functionalized structural color hydrogel sensor for colorimetric detection of glutathione.

Mikrochim Acta

September 2025

Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.

An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF

Encapsulation of non-noble bimetallic nanoparticles within a zeolite framework can improve the stability and accessibility of active sites, but the single microporous structure and poor metal stability decreased the catalytic performance of the catalyst. Here, 3D hierarchical ZSM-5 zeolite encapsulated NiCo nanoparticles (NiCo@3DHZ5) were synthesized by Bottom-up confined steam-assisted crystallization (SAC) one-pot hydrothermal method and applied to the hydrodeoxygenation of vanillin. A series of characterizations showed that highly stable alloyed NiCo nanoparticles were encapsulated in a framework of 3DHZ5, the strong metal-zeolite interactions resulted in highly dispersed NiCo nano-alloys facilitated hydrogen adsorption and spillover of active hydrogen atoms, and the 3D hierarchical structure promoted oxygenated substrate diffusion, the synergy interaction between the alloy particles confined in the 3DHZ5 pores and the acidic sites on the zeolite surface promoted the selective conversion of vanillin.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF

Orbital energy level engineering: 3d high-spin Mn's d-electron mediating electronic structure of VO boosting highly durable aqueous ammonium ion batteries.

J Colloid Interface Sci

August 2025

School of Chemistry, Dalian University of Technology, Dalian 116024, PR China; College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China. Electronic address:

Aqueous batteries have become a prospective future energy storage system because of their low coefficient of cost and stability. However, their lower energy density limits their applications. Ammonium ions (NH) have a small hydration radius and light molar mass, and aqueous ammonium ion batteries (AAIBs) are anticipated for solving the inherent low-energy density problem of aqueous batteries.

View Article and Find Full Text PDF