98%
921
2 minutes
20
Benefiting from superior semiconducting properties and the angle-dependence of the bulk photovoltaic effect (BPVE) on polarized light, the two-dimensional (2D) hybrid perovskite ferroelectrics are developed for sensitive self-powered polarized photodetection. Most of the currently reported ferroelectric-driven polarized photodetection is restricted to the shortwave optical response, and expanding the response range is urgently needed. Here we report the first instance of a FAPbI-derived (2D) perovskite ferroelectric, (BA)(FA)PbI (, BA is -butylammonium, FA is formamidinium). It exhibited a notably high thermostability and broad-spectrum adsorption extending to around 650 nm. Significantly, demonstrated ferroelectricity-driven self-powered polarized photodetection under 637 nm with an anisotropic photocurrent ratio of ∼1.96, ultrahigh detectivity of 3.34 × 10 Jones, and long-term repetition. This research will shed light on the development of new ferroelectrics for potential application in broad-spectrum polarization-based optoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c12300 | DOI Listing |
J Colloid Interface Sci
September 2025
College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:
Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.
View Article and Find Full Text PDFACS Nano
September 2025
College of Physics, Donghua University, Shanghai 201620, China.
Broadband anisotropic photodetectors show great promise for polarization-sensitive imaging and multispectral optoelectronic systems yet face critical challenges in material anisotropy modulation and broadband sensitivity. Weyl semimetals exhibit giant optical anisotropy and tunable heterojunction band alignment, enabling high-performance anisotropic photodetection. Herein, ultrabroadband PDs based on the NbNiTe (niobium nickel telluride), enabled by antenna integration and heterostructure engineering, achieve high sensitivity from visible to Terahertz (THz).
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:
Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.
View Article and Find Full Text PDFNat Commun
August 2025
State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.
Capturing multi-dimensional optical information is indispensable in modern optics. However, existing photodetectors can at best detect light fields whose wavelengths or polarizations are predefined at several specific values. Integrating broadband high-dimensional continuous photodetection including intensity, polarization, and wavelength within a single device still poses formidable challenges.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Postdoctoral Innovation Practice Base, Chengdu Polytechnic, 83 Tianyi Street, Chengdu 610041, China.
Polarization-sensitive photodetection is critical for advanced optical systems, yet achieving simultaneous high-fidelity recognition of the circularly polarized (CP) and linearly polarized (LP) light with compact designs remains challenging. Here, we use COMSOL 5.6 software to demonstrate a silicon metasurface-integrated MCT photodetector that resolves both CP and LP signals through a single ultrathin platform.
View Article and Find Full Text PDF