98%
921
2 minutes
20
Effective capture and safe disposal of radioactive iodine (I or I) during nuclear power generation processes have always been a worldwide environmental concern. Low-cost and high-efficiency iodine removal materials are urgently needed. In this study, we synthesized two aniline-based hypercrosslinked polymers (AHCPs), AHCP-1 and AHCP-2, for iodine capture in both aqueous and gaseous phases. They are obtained by aniline polymerization through Friedel-Crafts alkylation and Scholl coupling reaction, respectively, with high chemical and thermal stability. Notably, AHCP-1 exhibits record-high static iodine adsorption (250 wt%) in aqueous solution. In the iodine vapor adsorption, AHCP-2 presents an excellent total iodine capture (596 wt%), surpassing the most reported amorphous polymer adsorbents. The rich primary amine groups of AHCPs promote the rapid physical capture of iodine from iodine water and iodine vapor. Intrinsic features such as low-cost preparation, good recyclability, as well as excellent performance in iodine capture indicate that the AHCPs can be used as potential candidates for the removal of iodine from radioactive wastewater and gas mixtures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820307 | PMC |
http://dx.doi.org/10.3390/ijms24010370 | DOI Listing |
Small
September 2025
Department State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
Metal-organic cage-based crystalline frameworks (MCFs) are distinguished for high porosity and diverse functionality, while their applications are constrained by degradation in wet environments. Inspired by the "fight fire with fire" method in traditional Chinese medicine, trace-water-induced synthesis of armors is proposed to stabilize MCFs. Water at ppm concentration is enriched on the hydrophilic surface of MCFs, and then polymerizes with diisocyanate under the catalysis of MCFs to form hydrophobic shells.
View Article and Find Full Text PDFMed Phys
August 2025
GE HealthCare MICT, Stockholm, Sweden.
Background: Photon-counting computed tomography (CT) bears promise to substantially improve spectral and spatial resolution. One reason for the relatively slow evolution of photon-counting detectors in CT-the technology has been used in nuclear medicine and planar radiology for decades-is pulse pileup, that is, the random staggering of pulses, resulting in count loss and spectral distortion, which in turn cause image bias and reduced contrast-to-noise ratio (CNR). The deterministic effects of pileup can be mitigated with a pileup-correction algorithm, but the loss of CNR cannot be recovered, and must be minimized by hardware design.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
Aqueous zinc-iodine (Zn-I) batteries have emerged as a promising candidate for large-scale energy storage applications, owing to their inherent safety, cost-effectiveness, and high specific capacity. However, their commercial implementation is severely hindered by the irreversible capacity degradation and limited cycle life, which are caused by the unavoidable iodine shuttle effect resulting from the formation of soluble I species. Herein, we report the synthesis of three-dimensional hexapod-like fluorine-containing zeolitic imidazolate framework (H-F-ZIF) nanoparticles for separator modification to effectively inhibit the iodine shuttle effect.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
Obtaining direct structural evidence to elucidate the intricate interactions between iodine and adsorbents remains a significant challenge in the development of more effective iodine capture platforms. To address this issue, we report a 2D Co-tib MOF with adaptive interlayer cages that enable precise iodine binding via synergistic I···π, I···H-phenyl, and I···N halogen bonds, as directly observed by single-crystal XRD. Importantly, the 1D pores formed by the Co-tib layered structure enhance the diffusion of I, facilitating its adaptive binding.
View Article and Find Full Text PDFTop Curr Chem (Cham)
August 2025
School of Environmental Engineering, University of Seoul, Seoul, Republic of Korea.
Gases are integral to Earth's climate and ecosystem balance, but human activity has significantly altered atmospheric composition by increasing greenhouse gas emissions. In 2025, carbon dioxide emissions were estimated at around 39-41 billion tons, reflecting a continued increase. Emissions of carbon monoxide, sulfur dioxide, and nitrogen dioxide were expected to remain close to 2.
View Article and Find Full Text PDF