GUESS - A simple approach to accelerate optimization countercurrent separation.

J Chromatogr B Analyt Technol Biomed Life Sci

Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China. Electronic address:

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The generally useful estimate of solvent systems (GUESS) method, which is based on thin layer chromatography, is a simple and practical method for selecting solvent systems for countercurrent chromatography (CCC). However, it is rarely used for complex samples derived from natural products. In this study, GUESS was used for CCC solvent system selection and polarity-adjusted CCC separations of several fractions, which were obtained from a silica gel column containing complex compositions with a broad polarity from Salvia bowleyana Dunn. The GUESS method was performed on five fractions based on solvent systems in the n-hexane-ethyl acetate-methanol-water (HEMWat) family. Based on the GUESS results, the optimal solvent systems were selected for CCC separation. Twelve diterpenoids were obtained from the five silica gel column fractions of S. bowleyana Dunn using elution-extrusion countercurrent chromatography (EECCC). These demonstrate that GUESS guidance and the polarity adjustment of the solvent system accelerate the optimization of CCC separation conditions and simplify the process of accommodating a broad polarity of components in complicated mixture fractions. We therefore confirmed the feasibility and advantage of the GUESS method for complex natural chemical component separations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2022.123573DOI Listing

Publication Analysis

Top Keywords

solvent systems
16
guess method
12
accelerate optimization
8
countercurrent chromatography
8
solvent system
8
silica gel
8
gel column
8
broad polarity
8
bowleyana dunn
8
ccc separation
8

Similar Publications

Bioinspired Multifunctional Eutectogels for Skin-Like Flexible Strain Sensors with Potential Application in Deep-Learning Handwriting Recognition.

Langmuir

September 2025

Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.

Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.

View Article and Find Full Text PDF

Hydrophobic Tag-Assisted Liquid-Phase Synthesis of Tirzepatide.

Org Lett

September 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

The synthesis of tirzepatide relies heavily on solid phase peptide synthesis (SPPS), a process that is both costly and time-consuming. In this paper, a novel soluble liquid-phase assisted (LPPS) strategy for the efficient synthesis of tirzepatide is presented. The efficacy of the method is based on the distinct solubility properties of the soluble tag, which enables high yield synthesis while significantly reducing wastage of amino acids and solvents.

View Article and Find Full Text PDF

Solvothermal synthesis of PtPb nanoparticles with efficient alcohol oxidation performance.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.

View Article and Find Full Text PDF

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications.

Anal Sens

January 2025

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.

At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.

View Article and Find Full Text PDF