Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Subcortical brain regions play essential roles in the pathology of social anxiety disorder (SAD). While adolescence is the peak period of SAD, the relationships between altered development of the subcortical regions during this period and SAD are still unclear. This study investigated the age-dependent alterations in structural co-variance among subcortical regions and between subcortical and cortical regions, aiming to reflect aberrant coordination during development in the adolescent with SAD. High-resolution T1-weighted images were obtained from 76 adolescents with SAD and 67 healthy controls (HC), ranging from 11 to 17.9 years. Symptom severity was evaluated with the Social Anxiety Scale for Children (SASC) and the Depression Self Rating Scale for Children (DSRS-C). Structural co-variance and sliding age-window analyses were used to detect age-dependent group differences in inter-regional coordination patterns among subcortical regions and between subcortical and cortical regions. The volume of the striatum significantly correlated with SAD symptom severity. The SAD group exhibited significantly enhanced structural co-variance among key regions of the striatum (putamen and caudate). While the co-variance decreased with age in healthy adolescents, the co-variance in SAD adolescents stayed high, leading to more apparent group differences in middle adolescence. Moreover, the striatum's mean structural co-variance with cortical regions decreased with age in HC but increased with age in SAD. Adolescents with SAD suffer aberrant developmental coordination among the key regions of the striatum and between the striatum and cortical regions. The degree of incoordination is age-dependent, which may represent a neurodevelopmental trait of SAD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00787-022-02118-zDOI Listing

Publication Analysis

Top Keywords

subcortical regions
16
structural co-variance
16
cortical regions
16
social anxiety
12
regions
11
sad
11
age-dependent alterations
8
development subcortical
8
anxiety disorder
8
period sad
8

Similar Publications

Laser Interstitial Thermal Therapy (LITT) in pediatric neurosurgery: Single center retrospective analysis of 41 consecutive procedures.

Neurochirurgie

September 2025

Necker Hospital, Departments of Pediatric Neurosurgery, Radiology, Pediatric Neurology and Anesthesiology; Reference Center for Rare Epilepsies CRéER, Member of ERN Epicare; APHP, Paris, France; Université de Paris Cité, Paris, France; Institut Imagine, INSERM U1163, Paris, France; Paris Kids Can

Introduction: Laser Interstitial Thermal Therapy under MRI control has emerged as a safe and efficient alternative to microsurgery in epilepsy and neurooncology procedures. Yet it has been used only recently in seldom European centers. Here, we report our 4 years' experience with LITT in children (complications, epileptic and oncologic outcomes).

View Article and Find Full Text PDF

Iron-the most abundant magnetic brain substance-is essential for many biological processes, including dopamine and myelin synthesis. Quantitative susceptibility mapping (QSM) MRI has recently linked altered subcortical magnetic susceptibility (χ) to schizophrenia. Since χ is increased by iron and decreased by myelin, abnormal levels of either could underlie these QSM differences.

View Article and Find Full Text PDF

Early and accurate Alzheimer's disease (AD) diagnosis is critical for effective intervention, but it is still challenging due to neurodegeneration's slow and complex progression. Recent studies in brain imaging analysis have highlighted the crucial roles of deep learning techniques in computer-assisted interventions for diagnosing brain diseases. In this study, we propose AlzFormer, a novel deep learning framework based on a space-time attention mechanism, for multiclass classification of AD, MCI, and CN individuals using structural MRI scans.

View Article and Find Full Text PDF

Decision making and learning processes together enable adaptive strategic behavior. Animal studies demonstrated the importance of subcortical regions in these cognitive processes, but the human subcortical contributions remain poorly characterized. Here, we study choice and learning processes in the human subcortex, using a tailored ultra-high field 7T functional MRI protocol combined with joint models.

View Article and Find Full Text PDF

Background: Post-stroke cognitive impairment (PSCI), a common complication following stroke, significantly impacts patients' quality of life and prognosis. Research indicates that neuroregulation and protein metabolic disorders play crucial roles in the development of PSCI.

Purpose: This study aimed to evaluate the reliability of the Regional Meningoarterial Score (rLMC) in determining collateral circulation status in acute ischaemic stroke patients.

View Article and Find Full Text PDF