Enhanced internal ionic interaction of MFS efflux pump MdfA contributes to its elevated antibiotic export.

Phys Chem Chem Phys

College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infections caused by Gram-negative pathogens are difficult to manage due to their antibiotic resistance. Efflux pumps, which transport intracellular toxins out of the cytoplasm, play an important role in the detoxification of bacteria when treated with antibiotics. The major facilitator superfamily (MFS) is a kind of widely distributed efflux pumps and can actively export clinically important antibiotics such as ciprofloxacin, while the role of internal ionic interactions in regulating drug export remains poorly understood. Herein we used a representative MFS efflux pump MdfA to investigate the impact of internal ionic interactions on the antibiotic resistance of . First, we identified the internal salt bridges of MdfA and searched their natural variants across all the sequenced isolates. By constructing these variants, we discovered that extending the salt bridge on the cytoplasmic side (E136D) conferred an elevated antibiotic resistance level of , and the level was further enhanced by combining it with an artificial mutation K346R. By analyzing the trajectories of MdfA's variants in molecular dynamics (MD) simulations, we revealed that ionic interaction strengths on the two sides were proportionally enhanced, while the protein flexibility was not affected. Moreover, enhanced interactions resulted in a larger surface for MdfA's protonation, suggesting a higher possibility for its activation. Collectively, our data revealed the importance of internal interactions on the drug export of MdfA, offering insights for the development of novel inhibitors against MFS efflux pumps.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05059eDOI Listing

Publication Analysis

Top Keywords

internal ionic
12
mfs efflux
12
antibiotic resistance
12
efflux pumps
12
ionic interaction
8
efflux pump
8
pump mdfa
8
elevated antibiotic
8
ionic interactions
8
drug export
8

Similar Publications

Mitochondria delay action potential propagation.

Commun Biol

September 2025

Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg - Martinsried, Germany.

The internal resistance of axons to ionic current flow determines action potential conduction velocity. Although mitochondria support axonal function, axons have been modeled as organelle-free cables, and mitochondrial impact on conduction velocity, specifically by increasing internal resistance, remains understudied. We combine computational modeling and electron microscopy of forebrain premotor axons controlling birdsong production.

View Article and Find Full Text PDF

Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.

View Article and Find Full Text PDF

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF

Protein corona can significantly alter the interfacial physico-chemical characteristics and hydrodynamics of microentities in crowded bio-fluids. However, how this soft boundary affects the confined motion and intersurface interaction remains unknown. In this study, we used total internal reflection microscopy to directly measure the mechanical coupling underlying the confinement.

View Article and Find Full Text PDF