Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the greater awareness of elemental sustainability and the benefits of the circular economy concept, much waste electrical and electronic equipment (WEEE) is still destined for landfill. Effective methods for valorizing this waste within our society are therefore imperative. In this contribution, two gold(III) complexes obtained as recovery products from WEEE and their anion metathesis products were investigated as homogenous catalysts. These four recovery products were successfully applied as catalysts for the cyclization of propargylic amides and the condensation of acetylacetone with -iodoaniline. Impressive activity was also observed in the gold-catalyzed reaction between electron-rich arenes (2-methylfuran, 1,3-dimethoxybenzene, and azulene) and α,β-unsaturated carbonyl compounds (methyl vinyl ketone and cyclohexenone). These recovered compounds were also shown to be effective catalysts for the oxidative cross-coupling reaction of aryl silanes and arenes. When employed as Lewis acid catalysts for carbonyl-containing substrates, the WEEE-derived gold complexes could also be recovered at the end of the reaction and reused without loss in catalytic activity, enhancing still further the sustainability of the process. This is the first direct application in homogeneous catalysis of gold recovery products sourced from e-waste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727779PMC
http://dx.doi.org/10.1021/acssuschemeng.2c04092DOI Listing

Publication Analysis

Top Keywords

recovery products
12
complexes recovered
8
electronic equipment
8
homogeneous gold
4
gold catalysis
4
catalysis complexes
4
recovered waste
4
waste electronic
4
equipment despite
4
despite greater
4

Similar Publications

Background: Aflatoxin B1 (AFB1) is a highly carcinogenic mycotoxin frequently found in contaminated food products, posing a significant threat to public health and food safety. Therefore, the development of rapid, sensitive, and reliable detection methods for AFB1 is critical for early warning and prevention. However, traditional detection techniques often require expensive equipment, skilled personnel, and complex procedures, limiting their suitability for on-site applications.

View Article and Find Full Text PDF

Egg yolk immunoglobulin (IgY) has emerged as a promising alternative to monoclonal antibodies (mAbs) due to its facile extraction, higher yield, and greater tolerance to organic solvents. This work developed a selective IgY antibody against bongkrekic acid (BA) and isobongkrekic acid (IsoBA), the lethal toxins produced by Burkholderia gladioli pv. Cocovenenans (BGC), which led to severe food poisoning incidents and resulted in casualties.

View Article and Find Full Text PDF

Novel ultrafine Pt@Fe-MIL-101 nanozyme enables robust aflatoxin B1 immunoassay in diverse marine and agricultural systems.

Anal Chim Acta

November 2025

State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang

Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.

View Article and Find Full Text PDF

Integrin β3 dysregulation impairs megakaryopoiesis and microparticle production via disrupting ROCK-dependent cytoskeletal dynamics.

J Thromb Haemost

September 2025

Key Laboratory of Thrombosis and Hemostasis of National Health Commission, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Collaborative Innovation

Background: Megakaryocyte (MK) fragmentation into proplatelets (PPTs) and microparticles (MKMPs) is well established, yet the mechanisms underlying MKMP generation remain unclear.

Objectives: In order to investigate the role of integrin β3 and cytoskeletal dynamics during megakaryopoiesis and explore potential therapeutic targets for thrombocytopenia.

Methods: Proplatelet formation and MKMP release were evaluated both in vivo and in vitro under integrin β3 receptor impaired environment.

View Article and Find Full Text PDF

Conventional one-dimensional gas chromatography methods for gasoline quality monitoring require separate analyses for different component classes, limiting analytical efficiency and unconventional additive detection. This study presents a comprehensive two-dimensional gas chromatography with flame ionization detection (GC × GC-FID) platform enabling simultaneous quantification of regulated components and rapid screening of unconventional additives in a single analytical run. The method achieved excellent agreement with ASTM standards and high repeatability for BTEX (benzene, toluene, ethylbenzene, and xylenes) and oxygenates in gasoline.

View Article and Find Full Text PDF