98%
921
2 minutes
20
Cymbidium mosaic virus (CymMV) is one of economically important viruses that cause significant losses of orchids in the world. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow immunostrip (LFI) assay was developed for the detection of CymMV in orchid plants. A pair of primers containing fluorescent probes at each terminus that amplifies highly specifically a part of the coat protein gene of CymMV was determined for RT-RPA assay. The RT-RPA assay involved incubation at an isothermal temperature (39°C) and could be performed rapidly within 30 min. In addition, no cross-reactivity was observed to occur with odontoglossum ringspot virus and cymbidium chlorotic mosaic virus. The RT-RPA with LFI assay (RT-RPA-LFI) for CymMV showed 100 times more sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR). Furthermore, the RT-PCR-LFI assay demonstrated the simplicity and the rapidity of CymMV detection since the assay did not require any equipment, by comparing results with those of conventional RT-PCR. On-site application of the RT-RPA-LFI assay was validated for the detection of CymMV in field-collected orchids, indicating a simple, rapid, sensitive, and reliable method for detecting CymMV in orchids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742802 | PMC |
http://dx.doi.org/10.5423/PPJ.FT.10.2022.0147 | DOI Listing |
New Phytol
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
Our previous work identified p3-interacting protein (P3IP) as a novel plant factor that interacts with rice stripe virus p3 protein and activates autophagy to mediate its degradation, thereby restricting infection. However, the mechanism of P3IP-mediated autophagy and the evolutionary conservation of its antiviral function remain unknown. This study demonstrates that two Arabidopsis thaliana homologs, AtP3IP and AtP3IPH (Arabidopsis P3IP homologs, AtP3IPs), similarly activate autophagy and confer resistance to turnip mosaic virus (TuMV).
View Article and Find Full Text PDFSci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:
The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.
View Article and Find Full Text PDFPhytopathology
September 2025
Shandong Agricultural University, College of Plant Protection, Tai'an, Shandong, China;
Wheat yellow mosaic virus (WYMV) is the main cause of wheat yellow mosaic disease. Although its regulation of protein translation and interactions with host proteins are well-studied, independent regulation of the virus genome is poorly understood. This study performed in vitro experiments investigating replication regulation by the 5' UTR and 3' UTR of WYMV RNA2.
View Article and Find Full Text PDF