Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conversion of the more toxic Sb(III) into less toxic Sb(V) is an effective strategy for the treatment of antimony-contaminated sites. In this study, a strain, Phytobacter sp. X4, which can tolerate high concentrations of antimony and can use nitrate as an electron acceptor for Sb(III) oxidation under anaerobic conditions, was isolated from the deep soil of an antimony mine flotation tailing. Unlike other antimony oxidizing bacteria, X4 oxidized better under high Sb(III) concentration, and the oxidation efficiency of 10 mM Sb(III) reached the maximum at 110 h with 61.8 %. Kinetic study showed X4 yielded a V of 1.093 μM∙min and a K of 718.2 μM. The genome of Phytobacter sp. X4 consists of a complete circular chromosome and two plasmids. In addition, X4 had more metal(loid)s resistance genes and highly expressed genes than other Phytobacter spp., reflecting its stronger adaptive advantage in harsh survival environments. We also analyzed the origin and evolution of arsB, arsC, and arsH, which may have been transferred horizontally from other species. iscR and arsH may have an important contribution to Sb(III) oxidation. Thus, Phytobacter sp. X4 has a good ability to remediate high antimony-contaminated sites and can be applied to an anaerobic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130462DOI Listing

Publication Analysis

Top Keywords

antimony-contaminated sites
8
sbiii oxidation
8
phytobacter
5
sbiii
5
antimony
4
antimony oxidation
4
oxidation genome
4
genome sequencing
4
sequencing phytobacter
4
phytobacter isolated
4

Similar Publications

Antimony-resistant bacteria are potential natural resources for the bioremediation of mining soil pollution. A sp. 64 strain was isolated from antimony-contaminated soil.

View Article and Find Full Text PDF

Antimony pollution poses a significant threat to both the ecological environment and the health of people living in mining regions. Using organic fertilizers is an efficient approach for the remediation of heavy metal contamination in soil. This study aimed to explore how food waste organic fertilizer (FF) can remediate antimony-contaminated soil and the associated rhizosphere microbial response mechanism.

View Article and Find Full Text PDF

The conversion of the more toxic Sb(III) into less toxic Sb(V) is an effective strategy for the treatment of antimony-contaminated sites. In this study, a strain, Phytobacter sp. X4, which can tolerate high concentrations of antimony and can use nitrate as an electron acceptor for Sb(III) oxidation under anaerobic conditions, was isolated from the deep soil of an antimony mine flotation tailing.

View Article and Find Full Text PDF

Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination.

Chemosphere

January 2021

Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remed

Mining activities of antimony (Sb) and arsenic (As) typically result in severe environmental contamination. These contaminants accumulate in rice and thus threaten the health of local residents, who consume Sb- and As-enriched rice grains. Microorganisms play a critical role in the transformation and transportation of Sb and As in paddy soil.

View Article and Find Full Text PDF

Background: Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency.

View Article and Find Full Text PDF