Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

 In the present study, we have used machine learning algorithm to accomplish the task of automated detection of poor-quality scintigraphic images. We have validated the accuracy of our machine learning algorithm on Tc-methyl diphosphonate ( Tc-MDP) bone scan images.  Ninety-nine patients underwent 99mTC-MDP bone scan acquisition twice at two different acquisition speeds, one at low speed and another at double the speed of the first scan, with patient lying in the same position on the scan table. The low-speed acquisition resulted in good-quality images and the high-speed acquisition resulted in poor-quality images. The principal component analysis (PCA) of all the images was performed and the first 32 principal components (PCs) were retained as feature vectors of the image. These 32 feature vectors of each image were used for the classification of images into poor or good quality using machine learning algorithm (multivariate adaptive regression splines [MARS]). The data were split into two sets, that is, training set and test set in the ratio of 60:40. Hyperparameter tuning of the model was done in which five-fold cross-validation was performed. Receiver operator characteristic (ROC) analysis was used to select the optimal model using the largest value of area under the ROC curve. Sensitivity, specificity, and accuracy for the classification of poor- and good-quality images were taken as metrics for the performance of the algorithm.  Accuracy, sensitivity, and specificity of the model in classifying poor-quality and good-quality images were 93.22, 93.22, and 93.22%, respectively, for the training dataset and 86.88, 80, and 93.7%, respectively, for the test dataset.  Machine learning algorithms can be used to classify poor- and good-quality images with good accuracy (86.88%) using 32 PCs as the feature vector and MARS as the classification model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9665981PMC
http://dx.doi.org/10.1055/s-0042-1750436DOI Listing

Publication Analysis

Top Keywords

machine learning
16
good-quality images
16
learning algorithm
12
images
10
automated detection
8
detection poor-quality
8
poor-quality scintigraphic
8
scintigraphic images
8
bone scan
8
feature vectors
8

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF