Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy.

Autophagy

Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alpha-herpesvirus causes lifelong infections and serious diseases in a wide range of hosts and has developed multiple strategies to counteract the host defense. Here, we demonstrate that the tegument protein UL21 (unique long region 21) in pseudorabies virus (PRV) dampens type I interferon signaling by triggering the degradation of CGAS (cyclic GMP-AMP synthase) through the macroautophagy/autophagy-lysosome pathway. Mechanistically, the UL21 protein scaffolds the E3 ligase UBE3C (ubiquitin protein ligase E3C) to catalyze the K27-linked ubiquitination of CGAS at Lys384, which is recognized by the cargo receptor TOLLIP (toll interacting protein) and degraded in the lysosome. Additionally, we show that the N terminus of UL21 in PRV is dominant in destabilizing CGAS-mediated innate immunity. Moreover, viral tegument protein UL21 in herpes simplex virus type 1 (HSV-1) also displays the conserved inhibitory mechanisms. Furthermore, by using PRV, we demonstrate the roles of UL21 in degrading CGAS to promote viral infection . Altogether, these findings describe a distinct pathway where alpha-herpesvirus exploits TOLLIP-mediated selective autophagy to evade host antiviral immunity, highlighting a new interface of interplay between the host and DNA virus.: 3-MA: 3-methyladenine; ACTB: actin beta; AHV-1: anatid herpesvirus 1; ATG7: autophagy related 7; ATG13: autophagy related 13; ATG101: autophagy related 101; BHV-1: bovine alphaherpesvirus 1; BNIP3L/Nix: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCDC50: coiled-coil domain containing 50; CCT2: chaperonin containing TCP1 subunit 2; CGAS: cyclic GMP-AMP synthase; CHV-2: cercopithecine herpesvirus 2; co-IP: co-immunoprecipitation; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR-associated system 9; CTD: C-terminal domain; Ctrl: control; DAPI: 4',6-diamidino-2-phenylindole; DBD: N-terminal DNA binding domain; DMSO: dimethyl sulfoxide; DYNLRB1: dynein light chain roadblock-type 1; EHV-1: equine herpesvirus 1; gB: glycoprotein B; GFP: green fluorescent protein; H&E: hematoxylin and eosin; HSV-1: herpes simplex virus 1; HSV-2: herpes simplex virus 2; IB: immunoblotting; IRF3: interferon regulatory factor 3; lenti: lentivirus; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF9: membrane associated ring-CH-type finger 9; MG132: cbz-leu-leu-leucinal; NBR1: NBR1 autophagy cargo receptor; NC: negative control; NEDD4L: NEDD4 like E3 ubiquitin protein ligase; NHCl: ammonium chloride; OPTN: optineurin; p-: phosphorylated; PFU: plaque-forming unit; Poly(dA:dT): Poly(deoxyadenylic-deoxythymidylic) acid; PPP1: protein phosphatase 1; PRV: pseudorabies virus; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RNF126: ring finger protein 126; RT-PCR: real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TOLLIP: toll interacting protein; TRIM33: tripartite motif containing 33; UL16: unique long region 16; UL21: unique long region 21; UL54: unique long region 54; Ub: ubiquitin; UBE3C: ubiquitin protein ligase E3C; ULK1: unc-51 like autophagy activating kinase 1; Vec: vector; VSV: vesicular stomatitis virus; VZV: varicella-zoster virus; WCL: whole-cell lysate; WT: wild-type; Z-VAD: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241001PMC
http://dx.doi.org/10.1080/15548627.2022.2139921DOI Listing

Publication Analysis

Top Keywords

unique long
16
long region
16
protein
13
tegument protein
12
protein ul21
12
ubiquitin protein
12
protein ligase
12
interacting protein
12
herpes simplex
12
simplex virus
12

Similar Publications

The Royal College of Physicians flagship chief registrar programme, an initiative launched nearly a decade ago was an innovative leadership and management programme for medical registrars which has now been rolled out to other specialties as well. The role has evolved over time and explores the broader aspects of the ways of workings in the UK National Health Service, the progression and impact for individuals, teams and organisations across the wider health economy both from the perspective of acute care as well as treating long-term conditions. A personal reflection on connecting the experiential learning attained from being a chief registrar and transitioning through this unique and distinctive programme towards embedding into the Consultant Physician job that encompasses broadening horizons into non-clinical managerial domains such as Clinical Lead from a service line perspective as well as academic Co-lead to widen the landscape of undergraduate medical school placements is illustrated in this article.

View Article and Find Full Text PDF

Long-term effects and mechanisms of sulfur-modified nanoscale zero-valent iron in enhancing anaerobic treatment of highly toxic wastewater containing 2,4-dichlorophenol.

Bioresour Technol

September 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory disease characterized by eczematous skin lesions, intense pruritus, skin pain, sleep disruption, and mental health disturbances. There remains a need for a therapeutic option that delivers durable efficacy, safety, and convenient dosing across the AD patient population. This review provides an overview of AD pathogenesis driven by T-cell imbalance and describes a novel therapeutic option targeting the OX40 receptor, a costimulatory molecule expressed specifically on activated T cells.

View Article and Find Full Text PDF

In this work, we report the design, synthesis, and application of a hyper-crosslinked heterogeneous organometallic porous organic polymer (Pd@TP-DPPF) catalyst for the efficient and sustainable dicarbofunctionalization of internal alkynes via a facile three-component reaction. This strategy enables the highly trans-selective syntheses of tetrasubstituted olefins in excellent yields. The catalyst is constructed by integrating triptycene (TP) and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) into a robust palladium-based porous framework, resulting in a unique heterogeneous system that efficiently mediates the coupling of internal alkynes with readily available iodoarenes and aryl/methyl boronic acids.

View Article and Find Full Text PDF