Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen (N) is an important macro-nutrient required for crop production and is considered an important commodity for agricultural systems. Urea is a vital source of N that is used widely across the globe to meet crop N requirements. However, N applied in the form of urea is mostly lost in soil, posing serious economic and environmental issues. Therefore, different approaches such as the application of urea coated with different substances are used worldwide to reduce N losses. Urea coating is considered an imperative approach to enhance crop production and reduce the corresponding nitrogen losses along with its impact on the environment. In addition, given the serious food security challenges in meeting the current and future demands for food, the best agricultural management strategy to enhance food production have led to methods that involve coating urea with different nutrients such as sulfur (S) and zinc (Zn). Coated urea has a slow-release mechanism and remains in the soil for a longer period to meet the demand of crop plants and increases nitrogen use efficiency, growth, yield, and grain quality. These nutrient-coated urea reduce nitrogen losses (volatilization, leaching, and NO) and save the environment from degradation. Sulfur and zinc-coated urea also reduce nutrient deficiencies and have synergetic effects with other macro and micronutrients in the crop. This study discusses the dynamics of sulfur and zinc-coated urea in soil, their impact on crop production, nitrogen use efficiency (NUE), the residual and toxic effects of coated urea, and the constraints of adopting coated fertilizers. Additionally, we also shed light on agronomic and molecular approaches to enhance NUE for better crop productivity to meet food security challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614435PMC
http://dx.doi.org/10.3389/fpls.2022.942384DOI Listing

Publication Analysis

Top Keywords

nitrogen efficiency
12
sulfur zinc-coated
12
zinc-coated urea
12
crop production
12
urea
11
crop productivity
8
nitrogen losses
8
food security
8
security challenges
8
coated urea
8

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Beech leaf disease (BLD) poses a serious threat to the health of beech forests throughout the northeastern USA and Canada. Caused by invasive nematodes, BLD first appeared in 2012 in Ohio and has rapidly spread eastward. We investigated the effects of BLD on leaf and litter chemistry and leaf litter decomposition rate from four infected beech stands in Falmouth, Massachusetts.

View Article and Find Full Text PDF

Treatment of non-sterile biogas slurry from a pig farm using microalgae isolated from the activated sludge of sewage plants.

Microbiol Spectr

September 2025

Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF