98%
921
2 minutes
20
Biological invasions produce negative impacts worldwide, causing massive economic costs and ecological impacts. Knowing the relationship between invasive species abundance and the magnitude of their impacts (abundance-impact curves) is critical to designing prevention and management strategies that effectively tackle these impacts. However, different measures of abundance may produce different abundance-impact curves. Woody plants are among the most transformative invaders, especially in grassland ecosystems because of the introduction of hitherto absent life forms. In this study, our first goal was to assess the impact of a woody invader, Pinus contorta (hereafter pine), on native grassland productivity and livestock grazing in Patagonia (Argentina), building abundance-impact curves. Our second goal, was to compare different measure of pine abundance (density, basal area and canopy cover) as predictors of pine's impact on grassland productivity. Our third goal, was to compare abundance-impact curves among the mentioned measures of pine abundance and among different measures of impact: total grassland productivity, palatable productivity and sheep stocking rate (the number of sheep that the grassland can sustainably support). Pine canopy cover, closely followed by basal area, was the measure of abundance that best explained the impact on grassland productivity, but the shape of abundance impact curves differed between measures of abundance. While increases in pine density and basal area always reduced grassland productivity, pine canopy cover below 30% slightly increased grassland productivity and higher values caused an exponential decline. This increase in grassland productivity with low levels of pine canopy cover could be explained by the amelioration of stressful abiotic conditions for grassland species. Different measures of impact, namely total productivity, palatable productivity and sheep stocking rate, drew very similar results. Our abundance-impact curves are key to guide the management of invasive pines because a proper assessment of how many invasive individuals (per surface unit) are unacceptable, according to environmental or economic impact thresholds, is fundamental to define when to start management actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116480 | DOI Listing |
Glob Chang Biol
September 2025
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,
To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.
View Article and Find Full Text PDFPLoS One
September 2025
College of Economics and Management, Inner Mongolia Agricultural University, Hohhot, China.
Against the backdrop of grassland ecological degradation, grassland transfer has become a crucial pathway for optimizing livestock resource allocation and promoting sustainable pastoral development. Based on survey data from 383 herder households in the farming-pastoral ecotone of Inner Mongolia, China, this study applies Heckman models, mediation models, and moderation models to examine the impact of digital technology on herders' grassland leasing-in decisions and the underlying mechanisms. The results indicate that digital technology significantly increases both the probability and the scale of grassland leasing-in among herders.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFPhysiol Plant
September 2025
School of Forestry and Grassland Science, Ningxia University, Yinchuan, China.
Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.
View Article and Find Full Text PDF