Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leishmaniasis is a neglected tropical disease caused by parasitic intracellular protozoa of the genus . The visceral form of this disease caused by continues to constitute a major public health crisis, especially in countries of endemicity. In some cases, it is asymptomatic and comes with acute and chronic clinical outcomes such as weight loss, pancytopenia, hepatosplenomegaly, and death if left untreated. Over the years, the treatment of VL has relied solely on chemotherapeutic agents, but unfortunately, these drugs are now faced with challenges. Despite all efforts, no successful vaccine has been approved for VL. This could be as a result of limited knowledge/understanding of the immune mechanisms necessary to regulate parasite growth. Using a computational approach, this study explored the prospect of harnessing the properties of a disulfide isomerase protein of amastigotses to develop a multi-epitope subunit vaccine candidate against the parasite. We designed a 248-amino acid multi-epitope vaccine with a predicted antigenicity probability of 0.897372. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was stable, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against spp. Parasites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610175PMC
http://dx.doi.org/10.3390/vaccines10101598DOI Listing

Publication Analysis

Top Keywords

vaccine candidate
12
disease caused
8
vaccine
6
immunoinformatics studies
4
studies design
4
design potential
4
potential multi-epitope
4
multi-epitope peptide
4
peptide vaccine
4
vaccine combat
4

Similar Publications

Evaluation of subsp. antigens capable of stimulating host IRG-47 release identifies Mmm604, Mmm605, and Mmm606 as potential subunit vaccine antigens.

Infect Immun

September 2025

National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.

View Article and Find Full Text PDF

Ferric Reductase is a Key Factor in Regulating Iron Absorption by Blastocystis sp.

Acta Parasitol

September 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.

Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.

Methods: The location of Ferric reductase in Blastocystis sp.

View Article and Find Full Text PDF

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Coronavirus, a large family of positive-sense RNA viruses, are responsible for both mild and severe respiratory illnesses, ranging from the common cold to life-threatening conditions. Despite significant advances in vaccine and antiviral development, the high mutability of human coronaviruses (HCoVs), such as SARS-CoV-2, presents a major challenge in treating these infections. Effective, broad-spectrum antiviral drugs are urgently needed to address both current and future HCoV outbreaks.

View Article and Find Full Text PDF