Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against () insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8 ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611868PMC
http://dx.doi.org/10.3390/nano12203583DOI Listing

Publication Analysis

Top Keywords

insect cells
12
liposomal formulations
8
eugenol derivative
8
application insecticides
8
future application
8
formulations loaded
4
loaded eugenol
4
derivative application
4
insecticides encapsulation
4
encapsulation studies
4

Similar Publications

Mosquito reproductive biology is an underexplored area with potential for developing novel vector control strategies. In this study, we investigated the role of the testis-specific serine/threonine-protein kinase (tssk) family, an essential regulator of spermiogenesis in mammals, in mosquitoes. We identified tssk homologues, As_tssk3 and Aea_tssk1, in Anopheles stephensi and Aedes aegypti, respectively and analyzed their expression across different developmental stages.

View Article and Find Full Text PDF

During oxidative phosphorylation, the leaked electrons generate superoxide anions to attack the mitochondrial inner membrane and impair mitochondrial activity. Three superoxide dismutases (SODs) are secreted to degrade host superoxide anions in Verticillium dahliae. However, the roles of mitochondrial SODs (mtSODs) in superoxide anion detoxification and in virulence are unknown in this fungus.

View Article and Find Full Text PDF

Target RNA recognition drives PIWI complex assembly for transposon silencing.

Mol Cell

September 2025

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address:

PIWI-clade Argonaute proteins and their associated PIWI-interacting RNAs (piRNAs) are essential guardians of genome integrity, silencing transposable elements through distinct nuclear and cytoplasmic pathways. Nuclear PIWI proteins direct heterochromatin formation at transposon loci, while cytoplasmic PIWIs cleave transposon transcripts to initiate piRNA amplification. Both processes rely on target RNA recognition by PIWI-piRNA complexes, yet how this leads to effector recruitment is unclear.

View Article and Find Full Text PDF

A conserved PIWI silencing complex detects piRNA-target engagement.

Mol Cell

September 2025

Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA. Electronic address:

In animal germ cells, PIWI proteins use piRNAs to detect active selfish genetic elements. Base-pairing to a piRNA defines transposon recognition, but how this interaction triggers a defensive response remains unclear. Here, we identify a transposon recognition complex composed of the silkworm proteins Siwi, GTSF1, and Maelstrom.

View Article and Find Full Text PDF

The corneal lens is an apical extracellular matrix (aECM) structure with a biconvex shape that enables it to focus light. Chitin, a polymer of N-acetylglucosamine, is a major component of insect corneal lenses . Delayed chitin deposition in mutants and altered levels of chitin processing enzymes in mutants correlate with changes in the shape of corneal lenses , prompting us to investigate the role of chitin in determining corneal lens shape.

View Article and Find Full Text PDF