Adult murine hematopoietic stem cells and progenitors: an update on their identities, functions, and assays.

Exp Hematol

St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia. Electronic address:

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The founder of all blood cells are hematopoietic stem cells (HSCs), which are rare stem cells that undergo key cell fate decisions to self-renew to generate more HSCs or to differentiate progressively into a hierarchy of different immature hematopoietic cell types to ultimately produce mature blood cells. These decisions are influenced both intrinsically and extrinsically, the latter by microenvironment cells in the bone marrow (BM). In recent decades, notable progress in our ability to identify, isolate, and study key properties of adult murine HSCs and multipotent progenitor (MPP) cells has challenged our prior understanding of the hierarchy of these primitive hematopoietic cells. These studies have revealed the existence of at least two distinct HSC types in adults: one that generates all hematopoietic cell lineages with almost equal potency and one that is platelet/myeloid-biased and increases with aging. These studies have also revealed distinct MPP cell types that have different functional potential. This review provides an update to these murine HSCs and MPP cells, their key functional properties, and the assays that have been used to assess their potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2022.10.005DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cells
9
adult murine
8
hematopoietic stem
8
blood cells
8
hematopoietic cell
8
cell types
8
murine hscs
8
mpp cells
8
studies revealed
8

Similar Publications

Immunomodulatory Roles of Tonsil-Derived Mesenchymal Stem Cells.

Crit Rev Immunol

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF

The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.

View Article and Find Full Text PDF

Purpose: To evaluate visual outcomes after bacterial keratitis (BK) and identify predictive factors for poor prognosis at a tertiary referral center in Southern California.

Methods: This is a cross-sectional retrospective review of patients' medical records with culture-positive BK at University of California Los Angeles from January 1, 2014, to December 31, 2019. Main outcome measure was change in best-corrected visual acuity (BCVA) at 12 weeks posttreatment.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF