98%
921
2 minutes
20
Chiral morphology has been intensively studied in various fields including biology, organic chemistry, pharmaceuticals, and optics. On-demand and dynamic chiral inversion not only cannot be realized in most intrinsically chiral materials but also has mostly been limited to chemical or light-induced methods. Herein, we report reversible real-time magneto-mechanical chiral inversion of a three-dimensional (3D) micropillar array between achiral, clockwise, and counterclockwise chiral arrangements. Inspired by the flower corolla, achiral arrays of five and six radially arranged semicylindrical micropillars were employed as model systems to investigate the dynamic symmetry properties of arrays consisting of odd and even numbers of micropillars, respectively. Each micropillar underwent twisting actuation with a different twisting angle depending on the angle with the magnetic field direction and magnetic flux density, thereby collectively changing the chirality from the achiral to chiral state. Importantly, the morphological handedness of the micropillars was inverted within a few seconds by manipulating the direction of the magnetic field. A chiral morphology consisting of magnetically twisted micropillars was shape-fixed by the introduction of a polymeric binder. This binder could be simply washed off to return the shape-fixed twisted micropillars to their initial straight state. Magnetically programmable and reproducible 3D flower corolla-like micropillar arrays are expected to expand the potential of shape-reconfigurable devices that require real-time chiral manipulation in ambient environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c04825 | DOI Listing |
Psychol Rev
September 2025
Neural Computation Group, Max-Planck Institute for Human Cognitive and Brain Sciences.
It has been suggested that episodic memory relies on the well-studied machinery of spatial memory. This influential notion faces hurdles that become evident with dynamically changing spatial scenes and an immobile agent. Here I propose a model of episodic memory that can accommodate such episodes via temporal indexing.
View Article and Find Full Text PDFDynamic alteration of blood vessel geometry is an inherent feature of the circulatory system. However, while the engineering of multiscale, branched, and interconnected blood vessels has been well explored, mimicking the dynamic behavior (e.g.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Developing amphibious adhesives that combine high adhesion strength with on-demand erasability in both dry and wet environments remains a significant challenge. In this study, biomass-derived, amphibious, and erasable adhesives are fabricated by grafting 3-aminobenzoic acid and 3-aminobenzeneboronic acid onto epoxidized soybean oil (ESO), yielding ESO-Am adhesives. These adhesives are dynamically cross-linked with boroxines, hydrogen bonds, and hydrogen-bonded hydrophobic nanodomains.
View Article and Find Full Text PDFRSC Appl Polym
August 2025
Department of Applied Physical Sciences, University of North Carolina Chapel Hill NC 27514 USA
Stimuli-responsive hydrogels have gained significant attention in wound care due to their ability to adapt to dynamic physiological conditions, making them promising candidates for facilitating chronic wound healing. These hydrogels can respond to both internal and external environmental stimuli such as temperature, pH, reactive oxygen species (ROS), glucose levels, MMP, mechanical forces, magnetism, and ultrasound, enabling precise, on-demand therapeutic interventions through controlled drug release. This responsiveness is governed by reversible changes in their polymer network structure caused by interactions with external stimuli.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China. Electronic address:
Thermal hydrolysis pretreatment coupled with anaerobic digestion (THP-AD) substantially improves the energy recovery from sludge; however, its high thermal energy input often undermines overall system efficiency. This study developed a machine-learning-driven optimisation framework. The results indicated that, compared to the other three models, extreme gradient boosting achieved the highest predictive performance (R > 0.
View Article and Find Full Text PDF