Publications by authors named "Sukyoung Won"

Shape-programmable polymer networks derived from waste elemental sulfur hold great potential for diverse applications such as 4D printing and soft robotics. However, their crosslinked nature makes it challenging to 3D print complex geometry for soft robots. Herein, a closed-loop 4D printing strategy is reported of poly(phenylene polysulfide) networks (PSNs) and their magnetic particle composites (MPSNs) to fabricate multi-functional soft robots with programmable shape-morphing capabilities.

View Article and Find Full Text PDF

Magnetic soft actuators allow high-frequency shape reconfiguration of the micropillar array by rapid rotation of an external magnetic field; however, viscoelastic soft actuators cannot instantaneously reach an equilibrium deformation state to minimize the magnetic moment at a given short time scale, resulting in a significant reduction of the strain amplitude. Herein, we report high-frequency magnetic oscillation of a micropillar array without significant reduction in frequency or strain amplitude by programming the magnetization direction of hard magnetic microparticles embedded in a soft elastomer. Various oscillatory motions, including bending, twisting, and torsion under time-varying external magnetic fields, are demonstrated via programming the magnetization of anisotropic micropillars.

View Article and Find Full Text PDF

Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents magnetically responsive composite robots that can swim in two different modes, allowing them to move efficiently in water and perform coordinated tasks as a group.
  • - These robots have a unique structure made from carbon nanotube yarn and magnetic polymer composite, which gives them a lightweight yet strong design similar to biological musculoskeletal systems.
  • - The ability of these robots to work together enhances their functionality for various applications, such as cleaning up microplastics, managing microfluidic systems, and transporting pharmaceuticals.
View Article and Find Full Text PDF

Chiral morphology has been intensively studied in various fields including biology, organic chemistry, pharmaceuticals, and optics. On-demand and dynamic chiral inversion not only cannot be realized in most intrinsically chiral materials but also has mostly been limited to chemical or light-induced methods. Herein, we report reversible real-time magneto-mechanical chiral inversion of a three-dimensional (3D) micropillar array between achiral, clockwise, and counterclockwise chiral arrangements.

View Article and Find Full Text PDF

Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques.

View Article and Find Full Text PDF

Magnetically active shape-reconfigurable microarrays undergo programmed actuation according to the arrangement of magnetic dipoles within the structures, achieving complex twisting and bending deformations. Cylindrical micropillars have been widely used to date, whose circular cross-sections lead to identical actuation regardless of the actuating direction. In this study, micropillars with triangular or rectangular cross-sections are designed and fabricated to introduce preferential actuation directions and explore the limits of their actuation.

View Article and Find Full Text PDF

Programmable 3D shape morphing of hot-drawn polymeric sheets has been demonstrated using photothermal local shrinkage of patterned hinges. However, the hinge designs have been limited to simple linear hinges used to generate in-plane local folding or global curvature. Herein, we report an unprecedented design strategy to realize localized curvature engineering in 3D structures employing radial hinges and stress-releasing facets on 2D polymeric sheets.

View Article and Find Full Text PDF

Micro- and nanotextured surfaces with reconfigurable textures can enable advancements in the control of wetting and heat transfer, directed assembly of complex materials, and reconfigurable optics, among many applications. However, reliable and programmable directional shape in large scale is significant for prescribed applications. Herein, we demonstrate the self-directed fabrication and actuation of large-area elastomer micropillar arrays, using magnetic fields to both program a shape-directed actuation response and rapidly and reversibly actuate the arrays.

View Article and Find Full Text PDF

Magnetic soft robots facilitate the battery-free remote control of soft robots. However, parallel control of multiple magnetic robots is challenging due to interference between robots and difficult maneuvers. Here we present the orbital maneuvering of manifold magnetic soft robots.

View Article and Find Full Text PDF

In recent years, jointless soft robots have demonstrated various curvilinear motions unlike conventional robotic systems requiring complex mechanical joints and electrical design principles. The materials employed to construct soft robots are mainly programmable anisotropic polymeric materials to achieve contactless manipulation of miniaturized and lightweight soft robots through their anisotropic strain responsivity to external stimuli. Although reviews on soft actuators are extensive, those on untethered soft robots are scant.

View Article and Find Full Text PDF

Magnetically active helical soft robots were synthesized to achieve tether-less manipulation of the magnetomotility in order to avoid the on-board weight penalty and the distance restrictions originating from connection lines. Magnetic iron particles were dispersed in elastomeric polymer matrices and pre-cured in a two-dimensional film geometry, followed by post-curing in a three-dimensional (3D) helical geometry. To manipulate movements of the 3D helical soft robots, an external magnetic field was applied by placing a neodymium permanent magnet on a motorized linear translation stage.

View Article and Find Full Text PDF

An efficient method was developed for the synthesis of unsymmetrical -arylsulfamides using sulfamoyl azides and arylboronic acids in the presence of 10 mol% of copper chloride as the catalyst. The reaction was facilitated in MeOH in an open flask at room temperature. Unlike the coupling of sulfamides and boronic acids, the use of sulfamoyl azides was found to be beneficial with respect to the yield and reaction time.

View Article and Find Full Text PDF