98%
921
2 minutes
20
Perovskite light-emitting diodes (PeLEDs) have become a hot research topic in recent years and can now achieve an external quantum efficiency (EQE) of over 22% for green and red devices. However, the efficiency of blue PeLEDs, which are essential for display applications, lags far behind their green and red counterparts. The interface of the PeLEDs has a critical influence on the carrier transport and exciton recombination dynamics, and interface engineering is considered to be an effective strategy to improve the device performance. Herein, quaternary ammonium-based ionic liquids serve as an interfacial modification layer to significantly improve the device efficiency and stability. The interaction of quaternary ammonium cations with Pb(Br/Cl) octahedra promotes nucleation sites, which significantly improves the morphology of perovskite films and reduces the formation of defects in films. In addition, ion migration is also effectively suppressed in the device. As a result, with tributylmethylammonium bromide (TMAB) used as the interface layer, the EQE of the device is successfully increased from 3.5 to 6.7%, and the operational stability with a half-lifetime () is increased by over 12 times. Our work provides a new class of interface modification materials toward high-performance blue PeLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c15144 | DOI Listing |
Mater Horiz
September 2025
TU Delft, Netherlands.
Soft wearable sensors offer promising potential for advanced diagnostics, therapeutics, and human-machine interfaces. Unlike conventional devices that are bulky and rigid, often compromising skin integrity, comfort, and user compliance, soft wearable sensors are flexible, conformable, and better suited to the dynamic skin surface. This improved mechanical integration enhances signal fidelity and device performance, while also enabling safer, more comfortable, and continuous physiological monitoring in real-world environments.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
The potential of hafnia-based ferroelectric materials for Ferroelectric Random Access Memory (FeRAM) applications is limited by the imprint effect, which compromises readout reliability. Here, we systematically investigate the asymmetric imprint behavior in W/HfZrO/W ferroelectric capacitors, demonstrating that the imprint direction correlates directly with the ferroelectric polarization state. Notably, a pre-pulse of specific polarity can temporarily suppress the imprint effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
Electrochemical CO capture (eCC) excels in selectivity, reversibility, low-temperature operation, and reusability, yet liquid-phase systems struggle with mass transfer limitations. In this study, a phenazine-based capture agent was chemically grafted onto carboxylated carbon nanotubes, achieving an active loading of 4.4 wt %.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
Bacterial motility is strongly influenced by confinement. Here, we derive an asymptotic solution for the flow about a microswimmer enclosed in a weakly deformable Hele-Shaw drop-a drop sandwiched between two solid planes. For a microswimmer modelled as a dipole, we explore the swimmer's trajectory, the evolution of the droplet interface and the drop velocity.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Programmable Biomaterials Laboratory, Institute of Materials, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
The nanoscale spatial arrangement of T cell receptor (TCR) ligands critically influences their activation potential in CD8 T cells, yet a comprehensive understanding of the molecular landscape induced by engagement with native peptide-MHC class I (pMHC-I) remains incomplete. Using DNA origami nanomaterials, we precisely organize pMHC-I molecules into defined spatial configurations to systematically investigate the roles of valencies, inter-ligand spacings, geometric patterns, and molecular flexibility in regulating T cell function. We find that reducing the inter-ligand spacing to ∼7.
View Article and Find Full Text PDF