Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To evaluate the influence of preoperative optical zone on myopic correction in small incision lenticule extraction.

Methods: In this retrospective clinical study, 581 eyes from 316 patients underwent SMILE were selected, including 117 eyes in the small optical zone group (range from 6.0 to 6.4 mm) and 464 eyes in the large optical zone group (range from 6.5 to 6.8 mm). The measurements included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), spherical, and cylinder were measured preoperatively and 3 months postoperatively. Propensity score match (PSM) analysis was performed with age, gender, eye (right/left), keratometry and preoperative spherical equivalent between two different groups. The influence of optical zones on postoperative refractive outcomes were evaluated using univariate regression analysis.

Results: In total, 78 pairs of eyes were selected by PSM (match ratio 1:1). There were no differences in the age, gender, eye (right/left), keratometry or preoperative spherical equivalent between the small and large optical zone groups. However, the difference of postoperative spherical equivalent was significantly between groups. Patients with larger optical zones had a trend towards less undercorrection (P = 0.018). Univariate linear regression model analysis found that each millimeter larger optical zone resulted in 8.13% or 0.39D less undercorrection (P < 0.001). The dependency between the optical zones and postoperative spherical equivalent was significant in the higher preoperative myopia group (r = 0.281, P < 0.001), but not significant in the lower myopia group (r = 0.028, P = 0.702).

Conclusion: The diameter of optical zones would affect postoperative refractive outcomes in small incision lenticule extraction. This study indicated that larger optical zones induced less undercorrection, especially in patients with high myopia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585829PMC
http://dx.doi.org/10.1186/s12886-022-02631-4DOI Listing

Publication Analysis

Top Keywords

optical zone
24
spherical equivalent
12
influence optical
8
zone myopic
8
myopic correction
8
correction small
8
small incision
8
incision lenticule
8
zone group
8
group range
8

Similar Publications

Natural history of tractional lamellar macular hole.

Retina

September 2025

Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.

Purpose: To evaluate the long-term functional and anatomical outcomes in patients with tractional lamellar macular holes who were managed without surgical intervention.

Methods: 63 eyes previously diagnosed with tractional lamellar macular hole between July 1, 2009 and January 30, 2024 without any surgical interventions were enrolled. The change in best-corrected visual acuity (BCVA), lamellar hole diameter, central retinal thickness (CRT) on Optical coherence tomography (OCT), foveal avascular zone (FAZ) areas on OCT angiography, and M-chart scores between initial and final visit were assessed.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the focal relationship between choroidal thickness and retinal sensitivity in myopic eyes.

Methods: Participants underwent swept-source optical coherence tomography (SS-OCT) imaging and microperimetry testing. Choroidal thicknesses were obtained by segmenting the SS-OCT scans using a deep-learning approach.

View Article and Find Full Text PDF

Purpose: To report the refractive outcome of femtosecond laser-assisted lenticule intrastromal keratoplasty (LIKE) in correcting moderate to high hyperopia. Intraoperative effective optical zone (EOZ), centration offset, and postoperative higher order aberrations (HOAs) were analyzed to better understand factors affecting postoperative outcomes.

Methods: This was a prospective, consecutive case series study of LIKE for correcting hyperopia in one department from 2018 to 2023.

View Article and Find Full Text PDF

Differences in the Corneal Biomechanical Responses to LASIK and KLEx Based on Parametric Numerical Simulation.

J Refract Surg

September 2025

From National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: To use parametric numerical simulation to characterize and compare the differences in corneal biomechanical responses to laser in situ keratomileusis (LASIK) and keratorefractive lenticule extraction (KLEx) under various surgical settings.

Methods: The Finite Element Model was used in a parametric study to evaluate corneal biomechanical responses to LASIK and KLEx, considering variations in preoperative corneal thickness, corneal flap/cap thickness and diameter, refractive correction, and optical zone diameter. Surgery-induced stress, displacement, and interface contact pressure were compared between LASIK and KLEx using the Wilcoxon signed-rank test.

View Article and Find Full Text PDF

This study aims at the establishment of a universally applicable etching methodology to unveil the nanoscale crystalline structure of the matrix resin in fiber reinforced thermoplastic (FRTP) composites scanning electron microscopy (SEM). The crystalline structure hierarchically consists of crystalline texture, spherulite and lamella. The details of these structures are key parameters to understand the relationship with the mechanical properties of the material for the advancement.

View Article and Find Full Text PDF