Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806616PMC
http://dx.doi.org/10.1093/plcell/koac311DOI Listing

Publication Analysis

Top Keywords

plant immunity
12
long non-coding
8
non-coding rna
8
conserved plant
8
bpl3-nalncfl7-fl7 cascade
8
fl7
7
bpl3
5
nalncfl7
5
plant
5
bpl3 binds
4

Similar Publications

Roots: metabolic architects of beneficial microbiome assembly.

Plant Physiol

September 2025

Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht 3508 TB, the Netherlands.

The increasing demand for sustainable agricultural practices has driven a renewed interest in plant-microbiome interactions as a basis for the next "green revolution." Central to these interactions are root-derived metabolites that act as mediators of microbial recruitment and function. Plants exude a chemically diverse array of compounds that influence the assembly, composition, and stability of the root microbiome.

View Article and Find Full Text PDF

The stems of , an important vegetable in China, are targeted by the pathogen , triggering a response through the mitogen-activated protein kinase (MAPK) signalling pathway. To investigate the characteristics and the role of MAPK gene family in the biological stress response, a bioinformatics-based analysis was performed, and the expression patterns of and MAPK-infection pathway-related genes were detected in male plants inoculated with . Twenty-five were identified and divided into four subgroups A, B, C and D: carried a conserved TEY motif, while D had a conserved TDY motif.

View Article and Find Full Text PDF

OsPIL1 Differentially Modulates Rice Blast Resistance Through Integrating Light or Darkness During Magnaporthe oryzae Infection.

Plant Cell Environ

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China.

Light and darkness are critical environmental factors that regulate plant immune responses. OsPIL1, a phytochrome-interacting factor-like protein, has been implicated in rice immunity against Magnaporthe oryzae, although its underlying mechanism remains unclear. This study aimed to dissect how OsPIL1 integrates light or darkness to modulate rice immunity.

View Article and Find Full Text PDF

Glycoside hydrolase Ma3360 mediates immune evasion by Metarhizium anisopliae in insects.

Pestic Biochem Physiol

November 2025

National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.

View Article and Find Full Text PDF

Amazonian buriti and pracaxi as potential functional feed additives to improve shrimp immunity and resistance to WSSV.

Fish Shellfish Immunol

September 2025

Laboratory of Applied Immunology in Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88035-972 Florianópolis, SC, Brazil. Electronic address:

Environmental and nutritional factors are critical in modulating the immune system of Penaeus vannamei, particularly under viral threats such as white spot syndrome virus (WSSV). This study evaluated the effects of two Amazonian plant-based feed additives, buriti (Mauritia flexuosa) and pracaxi (Pentaclethra macroloba) brans, on shrimp immunocompetence, oxidative balance, and resistance to WSSV. Shrimp were fed diets supplemented with 4% or 8% of each ingredient.

View Article and Find Full Text PDF