98%
921
2 minutes
20
Microtubules (MT) are elongated, tubular, cytoskeletal structures formed from polymerization of tubulin dimers. They undergo continuous cycles of polymerization and depolymerization, primarily at their plus ends, termed dynamic instability. Although this is an intrinsic property of MTs, there are a myriad of MT-associated proteins that function in regulating MT dynamic instability and other dynamic processes that shape the MT array. Additionally, MTs assemble into long, semi-rigid structures which act as substrates for long-range, motor-driven transport of many different types of cargoes throughout the cell. Both MT dynamics and motor-based transport play important roles in the function of every known type of cell. Within the last fifteen years many groups have shown that MT dynamics and transport play ever-increasing roles in the neuronal function of mature neurons. Not only are neurons highly polarized cells, but they also connect with one another through synapses to form complex networks. Here we will focus on exciting studies that have illuminated how MTs function both pre-synaptically in axonal boutons and post-synaptically in dendritic spines. It is becoming clear that MT dynamics and transport both serve important functions in synaptic plasticity. Thus, it is not surprising that disruption of MTs, either through hyperstabilization or destabilization, has profound consequences for learning and memory. Together, the studies described here suggest that MT dynamics and transport play key roles in synaptic function and when disrupted result in compromised learning and memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838116 | PMC |
http://dx.doi.org/10.1016/j.mcn.2022.103787 | DOI Listing |
Cell Rep
September 2025
Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy. Electronic address:
Adenylosuccinate lyase deficiency (ADSLd) is a rare autosomal recessive purine metabolism disorder with several clinical manifestations. While toxic substrate accumulation is a known hallmark, no additional molecular mechanisms have been established. Here, we show that ADSLd is associated with mitochondrial dysfunction, including increased fragmentation, impaired respiration, and reduced ATP production.
View Article and Find Full Text PDFSci Total Environ
September 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:
Extreme rainfall during the Indian Summer Monsoon (ISM) accounts for approximately 27 % of the total seasonal rainfall. Most of this moisture is transported from the Indian Ocean. Amid ongoing warming of the Indian Ocean, 2023 stood out as one of the warmest monsoon years on record.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int
In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
The coastal mixing zone between seawater and freshwater is a critical interface for the exchange and transformation of contaminants. Despite its significance, the influence of seawater intrusion angle on contaminant transport has been largely overlooked. In this study, we combine laboratory column experiments with reactive transport modeling to investigate how varying seawater intrusion angles affect chromium (Cr) migration, particularly in colloid-facilitated forms.
View Article and Find Full Text PDF