98%
921
2 minutes
20
Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572488 | PMC |
http://dx.doi.org/10.3390/plants11192580 | DOI Listing |
Front Microbiol
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.
Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China.
Objectives: To investigate the therapeutic effect of acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
Methods: Forty male SD rats were randomly assigned to control group, model group, group and group (=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Anhui Provincial Key Laboratory of Meridian Viscera Correlationship, Anhui University of Chinese Medicine, Hefei 230012, China.
Objectives: To clarify the role of hippocampal glutamate system in regulating HPA axis in mediating the effect of electroacupuncture (EA) at the heart meridian for improving myocardial injury in rats with acute myocardial ischemia (AMI).
Methods: Male SD rats were randomized into sham-operated group, AMI group, EA group, and L-glutamic acid+EA group (=9). Rat models of AMI were established by left descending coronary artery ligation, and EA was applied at the "Shenmen-Tongli" segment; the rats in L-glutamic acid+EA group were subjected to microinjection of L-glutamic acid into the bilateral hippocampus prior to AMI modeling and EA treatment.
Lung
September 2025
The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.
Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.
View Article and Find Full Text PDF