Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

Methods: PNEs or primary bronchial epithelial cells (PBECs) were infected with the RV-A16 strain. Viral replication was confirmed by viral titration assays, immunofluorescence (IF) for the double-stranded RNA (dsRNA) replication intermediate and western blotting (WB). RNA sequencing was used to determine transcriptomic changes in PNEs, and inflammatory responses were assessed by inflammatory microarray. Calcium mobilisation assays were used to investigate the effect of interleukin-1β (IL-1β) on PNE transient receptor potential (TRP) A1 channel responses.

Results: Viral titrations, WB and IF confirm RV-A16 entry and replication in PNEs and PBECs. Gene signatures associated with antiviral immune responses, sensory neuropathies and N-Methyl-D-aspartic acid (NMDA) receptor activity were upregulated in RV infected PNEs. Several cytokines were increased from PNEs and PBECs following RV infection, most notably IL-1β. Treatment of PNEs with IL-1β resulted in heightened TRPA1 channel sensitivity.

Conclusion: We report the suitability of an airway neuronal model for the study of the direct effects of RV infection on nerves. RV-induced release of IL-1β from airway epithelium heightens neuronal TRPA1 responses suggesting a mechanism for virus-induced cough hypersensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00408-025-00846-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12414851PMC

Publication Analysis

Top Keywords

neuronal model
8
pnes
8
pnes pbecs
8
neuronal
5
neuroinflammatory consequences
4
consequences rhinovirus
4
rhinovirus infection
4
infection human
4
human epithelial
4
epithelial neuronal
4

Similar Publications

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF