Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The mortality rate from melanoma has been rising and hence new therapeutic approaches for this disease have received extensive attention, especially the search for novel therapeutic targets. The aim of this study was to find new targets for the treatment of melanoma through a bioinformatics and experimental approach.

Methods: First, we screened for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between melanoma and normal tissues using the TCGA-SKCM, GTEX, and GSE24996 datasets. Next, we identified epithelial-mesenchymal transition (EMT)-related DEGs and analyzed their expression levels and association with patient survival. The expression level of DEGs was then confirmed in normal human melanocytes and melanoma cells. Bioinformatics analysis was used to identify miRNAs that targeted the most highly expressed DEG, , and their binding confirmed using dual luciferase. Enriched pathways for the target miR-22-3p were also analyzed. miR-22-3p was overexpressed in cells in order to investigate changes in cell activity and in related genes and proteins. Exosomes from human bone marrow mesenchymal stem cells (MSCs) were coated with miR-22-3p to examine its effect on EMT.

Results: The expression levels of , , and were higher in melanoma than in normal tissues and were associated with worse patient survival. The differential expression of these genes was confirmed using normal human skin melanocytes (PIG1) and human melanoma cells (WM-266-4). was the most differentially expressed gene between WM-266-4 and PIG1 cells, and was also predicted to be a target for miR-22-3p. The results of dual luciferase experiments confirmed that miR-22-3p could bind to . Following the overexpression of miR-22-3p in WM-266-4 cells, the cell viability decreased, the expression levels of , and decreased, the expression level of increased, and cell apoptosis increased. Transfection of miR-22-3p using exosomes resulted in similar effects.

Conclusions: We identified three genes (, , ) that showed a high level of differential expression in melanoma. is a target for miR-22-3p binding and this can inhibit the EMT of melanoma cells, thereby preventing the development of melanoma. Moreover, exosomes secreted by MSCs can be loaded with miR-22-3p, thus regulating the EMT process in melanoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2709275DOI Listing

Publication Analysis

Top Keywords

melanoma cells
20
differentially expressed
12
expression levels
12
target mir-22-3p
12
melanoma
11
cells
10
mir-22-3p
9
mesenchymal stem
8
stem cells
8
epithelial-mesenchymal transition
8

Similar Publications

Cellular Senescence and Immunosenescence in Melanoma: Insights From the Tumor Microenvironment.

Cancer Med

September 2025

Department of Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Background: Melanoma is one of the most immunogenic malignancies, yet resistance to immune checkpoint inhibitors (ICIs) remains a major obstacle to durable therapeutic success. Emerging evidence indicates that aging-related processes, including cellular senescence and immunosenescence, can reshape the tumor microenvironment (TME) to favor immune evasion and disease progression. Senescent melanoma and stromal cells secrete a senescence-associated secretory phenotype (SASP) that alters immune cell recruitment and function, while immunosenescence leads to diminished cytotoxic responses and the accumulation of dysfunctional or suppressive immune subsets.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics identify dihydrolipoic acid succinyltransferase as a promoter of tumor invasion via vascular pathways in cutaneous melanoma.

Int J Biol Macromol

September 2025

School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli

Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF

New coumarins from the -butanol part of .

Nat Prod Res

September 2025

Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China.

Chemical investigations of the -butanol extract of the roots of were carried out using column chromatography, flash, semi-preparative HPLC, and chiral HPLC. Five unidentified compounds, including two prenylated coumarin glucosides, two prenylated furanocoumarin glucosides, and a benzofuran glucoside, together with twelve known compounds, were isolated from the -butanol fraction of extract. The structures of these compounds were identified by HRMS, NMR, UV, ECD in combination with quantum chemical calculations, and comparison with the literature.

View Article and Find Full Text PDF