Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The hydrogen-based hollow fiber membrane biofilm reactor (H2-based MBfR) has shown to be a promising technology for nitrate (NO -N) reduction. Hollow fiber membranes (HFM) operating in a closed mode in an H-based MBfR often suffer from reverse gas diffusion, taking up space for the effective gas substrate and resulting in a reduction in the HFM diffusion efficiency, which in turn affects denitrification performance. In this work, we developed a laboratory-scale H-based MBfR, which operated in a closed mode to investigate the dynamics of denitrification performance and biofilm microbial community analysis at different H supply pressures. A faster formation of biofilm on the HFM and a shorter start-up period were found for a higher H supply pressure. An increase in the H pressure under 0.08 MPa could significantly promote denitrification, while a minor increase in denitrification was observed once the H pressure was over 0.08 MPa. Sequencing analysis of the biofilm concluded that (i) the dominant phylum-level bacteria in the reactor during the regulated hydrogen pressure phase were and ; (ii) when the hydrogen pressure was 0.04-0.06 MPa, the dominant bacteria in the MBfR were mainly enriched on the hollow fiber membrane near the upper location (Gas inlet). With a gradual increase in the hydrogen pressure, the enrichment area of the dominant bacteria in MBfR gradually changed from the upper location to the distal end of the inlet. When the hydrogen pressure was 0.10 MPa, the dominant bacteria were mainly enriched on the hollow fiber membrane in the down location of the MBfR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542790PMC
http://dx.doi.org/10.3389/fmicb.2022.1023402DOI Listing

Publication Analysis

Top Keywords

hollow fiber
16
hydrogen pressure
16
h-based mbfr
12
fiber membrane
12
dominant bacteria
12
microbial community
8
closed mode
8
denitrification performance
8
pressure 008
8
008 mpa
8

Similar Publications

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.

View Article and Find Full Text PDF

Pervaporation, combined with other separation processes, can effectively remove water from fermentation product streams, making it highly suitable for purifying alcohols like 2,3-butanediol (BDO). In this study, a dense poly-(vinylidene fluoride) (PVDF) hollow fiber membrane module prototype was fabricated for BDO dehydration, achieving >0.2 LMH total flux and >95% BDO rejection.

View Article and Find Full Text PDF

Milkweed Fiber Nonwovens for Sustainable Thermal and Acoustic Building Insulation.

Materials (Basel)

August 2025

Department of Mechanical Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study investigates the use of a local fiber, specifically milkweed that grows in Quebec, Canada, for nonwoven building applications. Milkweed is a natural fiber with an ultra-lightweight hollow structure that provides excellent acoustic and thermal insulation properties. To provide three-dimensional stability to nonwovens, milkweed fibers were blended with a low-melt fiber composed of a polyethylene terephthalate core and a polyolefin sheath (LM 2.

View Article and Find Full Text PDF

We present an optical hydrogen sensor based on photothermal spectroscopy with a hollow-core fiber, specifically targeting the 2121.8-nm quadrupole absorption line of hydrogen. Our experiments demonstrate the sensor's capability for detecting hydrogen gas at concentrations as low as 77 ppm, with a lock-in time constant of 1 second.

View Article and Find Full Text PDF