Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zn-based alloys are considered as new kind of potential biodegradable implanted biomaterials recently. The difficulty of metal implanted biomaterials and bone tissue integration seriously affects the applications of metal implanted scaffolds in bone tissue-related fields. Herein, we self-designed Zn0.8Mn and Zn0.8Mn0.1Li alloys and CaP coated Zn0.8Mn and Zn0.8Mn0.1Li alloys, then evaluated the degradation property and cytocompatibility. The results demonstrated that the Zn0.8Mn0.1Li alloys had profoundly modified the degradation property and cytocompatibility, but Zn0.8Mn0.1Li alloys had particularly adverse effects on the surface morphology of osteoblasts. The results furtherly showed that the CaP-coated Zn0.8Mn and Zn0.8Mn0.1Li alloys scaffold had better biocompatibility, which would further guarantee the biosafety of this new kind of biodegradable Zn-based alloys implants for future clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515419PMC
http://dx.doi.org/10.3389/fbioe.2022.1013097DOI Listing

Publication Analysis

Top Keywords

zn08mn01li alloys
20
zn08mn zn08mn01li
12
alloys
8
zn-based alloys
8
implanted biomaterials
8
metal implanted
8
degradation property
8
property cytocompatibility
8
zn08mn01li
5
development biodegradable
4

Similar Publications

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

Environ Res

September 2025

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.

View Article and Find Full Text PDF

Developing pH-universal hydrogen evolution reaction (HER) electrocatalysts demands the simultaneous optimization of water dissociation kinetics and hydrogen adsorption. Herein, a CuCo/CoWO heterostructure with an area of 600 cm was fabricated via a facile one-step electrodeposition strategy. It only needs 193.

View Article and Find Full Text PDF

PdMoW trimetallene facilitates the electrooxidation of ethanol in alkaline electrolyte with high efficiency and C2 selectivity.

J Colloid Interface Sci

September 2025

Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:

Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.

View Article and Find Full Text PDF

Impact of Different Lithiation Mechanisms Across Transition Metal Oxide Anodes on Performances for High-Energy Lithium-Ion Batteries.

Chem Rec

September 2025

Analytical and Applied Chemistry Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India.

Transition metal oxides (TMOs) are a promising material for use as anodes in lithium-ion batteries (LIBs). TMO anode can be classified on the basis of their lithiation/delithiation mechanism, such as intercalation mechanism-based TMO anode, conversion mechanism-based TMOs, and alloying/dealloying mechanism-based TMO anode. Each class of TMOs has its own advantages and limitations.

View Article and Find Full Text PDF

Differentiating electron diffuse scattering via 4D-STEM spatial fluctuation and correlation analysis in complex FCC alloys.

Ultramicroscopy

August 2025

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304W. Green Street, Urbana 61801, IL, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana 61801, IL, USA. Electronic address:

Complex face-centered-cubic (FCC) alloys frequently display chemical short-range ordering (CSRO), which can be detected through the analysis of diffuse scattering. However, the interpretation of diffuse scattering is complicated by the presence of defects and thermal diffuse scattering, making it extremely challenging to distinguish CSRO using conventional scattering techniques. This complexity has sparked intense debates regarding the origin of specific diffuse-scattering signals, such as those observed at 1/3{422} and 1/2{311} positions.

View Article and Find Full Text PDF