Lipidomics and transcriptomics insight into impacts of microplastics exposure on hepatic lipid metabolism in mice.

Chemosphere

School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, 310053, China. Electronic address:

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microplastics (MPs), the emerging environmental pollutants, have attracted global attention due to the potential public health challenge and ecological security risk. Recent studies suggested liver as a vulnerable organ to MPs exposure, evidenced by abnormal hepatic lipid metabolism upon MPs intake in multiple animal species. However, the specific changes of lipid metabolism in mammalian livers, as well as the underlying mechanisms, remain to be elucidated. In the present study, C57BL/6 mice were randomly assigned to normal drinking water or drinking water containing 100 μg L or 1000 μg L polystyrene (PS) MPs for 8 weeks. MPs exposure exerted no significant effect on body weight, serum triglyceride or total cholesteryl esters. However, mice showed impaired glucose tolerance and hepatic lipid deposition in response to high-dose MPs administration. Further lipidomic analysis showed significant alteration in hepatic lipid species particularly with free fatty acids (FFAs) and triacylglycerols (TAGs) in mice exposed to MPs. Meanwhile, the liver transcriptional profile indicated MPs exposure-induced differentially expressed genes (DEGs) were enriched in pathways of lipid metabolism and unfolded protein response. Furthermore, most altered lipid species were significantly correlated with DEGs enriched in lipid metabolic signaling. These findings provide lipidomic and transcriptional signatures of liver in response to MPs exposure, which will shed light on further understanding of the metabolic toxicity of MPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136591DOI Listing

Publication Analysis

Top Keywords

hepatic lipid
16
lipid metabolism
16
mps exposure
12
mps
10
lipid
8
drinking water
8
lipid species
8
degs enriched
8
lipidomics transcriptomics
4
transcriptomics insight
4

Similar Publications

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.

View Article and Find Full Text PDF

Hyperlipidemia is a common chronic disease characterized by elevated levels of lipids in the blood. There is some evidence that suggests that berberine (BBR) might be beneficial for the treatment of hyperlipidemia. However, its low intestinal bioavailability limits its potential therapeutic action.

View Article and Find Full Text PDF

Efficacious suppression of primary and metastasized liver tumors by polyIC-loaded lipid nanoparticles.

Hepatology

September 2025

Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.

Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.

View Article and Find Full Text PDF

Kinases are activators of well‑known inflammatory cascades implicated in metabolic disorders, and abnormal activation of casein kinase II (CK2) is associated with several inflammatory disorders. However, thus far, its role in the low‑grade chronic inflammatory response known as 'metaflammation', which is a hallmark of obesity and type 2 diabetes, has not yet been elucidated. The present study aimed to evaluate the role of CK2 in diet‑induced metaflammation and the effects of the CK2 inhibitor 4,5,6,7‑tetrabromobenzotriazole (TBB) on a murine model fed a high‑fat‑high‑sugar (HFHS) diet.

View Article and Find Full Text PDF