Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Utilizing ionic liquids (ILs) with low flammability as the precursor component for a gel polymer electrolyte is a smart strategy out of safety concerns. Solvate ionic liquids (SILs) consist of equimolar lithium bis(trifluoromethylsulfonyl)imide and tetraglyme, alleviating the main problems of high viscosity and low Li conductivity of conventional ILs. In this study, within a very short time of 30 s, a SIL turns immobile using efficient and controllable UV-curing with an ethoxylated trimethylolpropane triacrylate (ETPTA) network, forming a homogeneous SIL-based gel polymer electrolyte (SGPE) with enhanced thermal stability (216 °C), robust mechanical strength (compression modulus: 1.701 MPa), and high ionic conductivity (0.63 mS cm at room temperature). A Li|SGPE|LiFePO cell demonstrates high charge/discharge reversibility and cycling stability with a capacity retention rate of 99.7% after 750 cycles and an average Coulombic efficiency of 99.7%, owing to its excellent electrochemical compatibility with Li-metal. A close-contact electrode/electrolyte interface is formed by in situ curing of the electrolyte on the electrode surface, which enables the pouch full cell to work stably under the conditions of cutting/bending. In view of the excellent mechanical, thermal, and electrochemical performances of SGPE, it is believed to be a promising gel polymer electrolyte for constructing high-safety lithium-ion batteries (LIBs).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c13325DOI Listing

Publication Analysis

Top Keywords

gel polymer
16
polymer electrolyte
16
solvate ionic
8
lithium-ion batteries
8
ionic liquids
8
electrolyte
5
high-performance highly
4
highly safe
4
safe solvate
4
ionic
4

Similar Publications

Engineering a cell-free bone regeneration platform using osteogenically primed MSC-EVs and nHAp-enriched IPN hydrogels.

Regen Med

September 2025

Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.

Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.

Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.

View Article and Find Full Text PDF

Recent Advances in Oral Gel Drug Delivery System: A Polymeric Approach.

Drug Dev Ind Pharm

September 2025

Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.

ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.

View Article and Find Full Text PDF

Although traditional immunogenic cell death (ICD) inducers generate vaccines (ISV) to potentiate antiprogrammed cell death ligand 1 (anti-PDL1) antibodies therapy, their efficacy remains limited. This limitation may be attributed to the physical barrier created by extracellular matrix (ECM) and immunosuppressive metabolic barrier mediated by adenosine. Here, we report an oncolytic polymer (OP), a well-designed ε-polylysine derivative with ICD-inducing capacity, which can simultaneously facilitate the release of endogenous ECM-degrading enzyme, Cathepsin B.

View Article and Find Full Text PDF

Tacrolimus belongs to the BCS class-II drug family and exhibits poor water solubility, which leads to poor bioavailability. Furthermore, since tacrolimus is an immunosuppressant, it is essential to maintain its therapeutic concentration for a greater period of time to confirm its effectiveness against transplant rejection. Therefore, to achieve the objective of the sustained release of the drug with a suitable amount of entrapment efficiency, pH-sensitive tacrolimus-loaded superabsorbent hydrogels using chitosan have been prepared.

View Article and Find Full Text PDF

Solid-state organic electrochemical transistors.

Mater Horiz

September 2025

Faculty of Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.

Organic electrochemical transistors (OECTs) continue to be the subject of much detailed and systematic study, being suitable for a diverse range of applications including bioelectronics, sensors, and neuromorphic computing. OECTs conventionally use a liquid electrolyte, and this architecture is well suited for sensing or bio-interfacing applications where biofluids or liquid samples can be used directly as the electrolyte. A more recent trend is solid-state OECTs, where a solid or semi-solid electrolyte such as an ion gel, hydrogel or polyelectrolyte replaces the liquid component for an all-solid-state device.

View Article and Find Full Text PDF