98%
921
2 minutes
20
Mutant huntingtin, which causes Huntington's disease (HD), is ubiquitously expressed but induces preferential loss of striatal neurons by unclear mechanisms. Rab11 dysfunction mediates homeostatic disturbance of HD neurons. Here, we report that Rab11 dysfunction also underscores the striatal vulnerability in HD. We profiled the proteome of Rab11-positive endosomes of HD-vulnerable striatal cells to look for protein(s) linking Rab11 dysfunction to striatal vulnerability in HD and found XK, which triggers the selective death of striatal neurons in McLeod syndrome. XK was trafficked together with Rab11 and was diminished on the surface of immortalized HD striatal cells and striatal neurons in HD mouse brains. We found that XK participated in transporting manganese, an essential trace metal depleted in HD brains. Introducing dominantly active Rab11 into HD striatal cells improved XK dynamics and increased manganese accumulation in an XK-dependent manner. Our study suggests that impaired Rab11-based recycling of XK onto cell surfaces for importing manganese is a driver of striatal dysfunction in Huntington's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475296 | PMC |
http://dx.doi.org/10.1083/jcb.202112073 | DOI Listing |
Int J Eat Disord
September 2025
Department of Physiology, Monash University, Clayton, Victoria, Australia.
Objective: Converging evidence from neuroimaging studies and genome-wide association study (GWAS) suggests the involvement of prefrontal cortex (PFC) and striatum dysfunction in the pathophysiology of anorexia nervosa (AN). However, identifying the causal role of circuit-specific genes in the development of the AN-like phenotype remains challenging and requires the combination of novel molecular tools and preclinical models.
Methods: We used the activity-based anorexia (ABA) rat model in combination with a novel viral-based translating ribosome affinity purification (TRAP) technique to identify transcriptional differences within a specific neural pathway that we have previously demonstrated to mediate pathological weight loss in ABA rats (i.
J Affect Disord
September 2025
University of Denver, Department of Psychology, United States of America; University of California, Irvine, Department of Pediatrics, United States of America. Electronic address:
Anhedonia is increasingly recognized as a transdiagnostic risk factor for psychopathology. New evidence demonstrates that anhedonia is present in infancy and early childhood. Structural variability in striatal regions involved in reward processing and pleasure seeking is concurrently linked to anhedonia, yet few studies have examined whether striatal differences presage anhedonia, and none have examined prospective associations before middle childhood.
View Article and Find Full Text PDFThe end-stage pathology of Parkinson's disease (PD) involves the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). However, synaptic deregulation of these neurons begins much earlier. Understanding the mechanisms behind synaptic deficits is crucial for early therapeutic intervention, yet these remain largely unknown.
View Article and Find Full Text PDFBrain
September 2025
Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA.
Parkinson's disease (PD) is characterized by progressive neurodegeneration, which is associated with motor and non-motor symptoms. Dopamine replacement therapy can remediate motor symptoms, but can also cause impulse control disorder (ICD), characterized by pathological gambling, hypersexuality, and/or compulsive shopping. Approximately 14-40% of all medicated PD patients suffer from ICD.
View Article and Find Full Text PDFJ Neurosci
September 2025
Faculty of Psychology, Southwest University, Chongqing, China
While the hyper- and hypo- reward or punishment sensitivities (RS, PS) have received considerable attention as prominent transdiagnostic features of psychopathology, the lack of an overarching neurobiological characterization currently limits their early identification and neuromodulation. Here we combined microarray data from the Allen Human Brain Atlas with a multimodal fMRI approach to uncover the neurobiological signatures of RS and PS in a discovery-replication design (N=655 healthy participants, 442 Females). Both RS and PS were mapped separately in the brain, with the functional connectome in the fronto-striatal network encoding reward responsiveness, while the fronto-insular system was particularly engaged in punishment sensitivity.
View Article and Find Full Text PDF