98%
921
2 minutes
20
Parkinson's disease (PD) is characterized by progressive neurodegeneration, which is associated with motor and non-motor symptoms. Dopamine replacement therapy can remediate motor symptoms, but can also cause impulse control disorder (ICD), characterized by pathological gambling, hypersexuality, and/or compulsive shopping. Approximately 14-40% of all medicated PD patients suffer from ICD. Despite the high prevalence of ICD in medicated PD patients, we know little of its mechanisms, and the main therapeutic strategy is reducing or eliminating dopamine agonist medication. Human imaging studies suggest that the input nucleus of the basal ganglia, the striatum, may be a critical site of circuit dysfunction in ICD. To explore the cellular and circuit mechanisms of ICD, we developed a mouse model in which we administered the dopamine D2/3 agonist pramipexole to parkinsonian and healthy control mice. ICD-like behavior was assessed using a delay discounting task. Delay discounting is a normal cognitive phenomenon, in which the value of a reward decreases according to the time needed to wait for it. Impulsivity is measured as the preference for immediate (small) over delayed (large) rewards. We combined this mouse model with chemogenetics and in vivo optically-identified single-unit recordings to examine how dopamine agonists act on vulnerable striatal circuitry to mediate impulsive decision-making. We found that in parkinsonian mice, therapeutic doses of dopamine D2/3R or D1R agonists drove more pronounced delay discounting, reminiscent of what has been reported in PD/ICD patients on medication. In contrast, healthy mice did not become more impulsive when given the same dose of dopamine agonist. The clinically relevant dopamine D2/3R agonist pramipexole induced marked bidirectional changes in the firing of striatal direct and indirect pathway neurons in parkinsonian mice. Chronic pramipexole treatment potentiated these changes in striatal physiology and decision-making behavior. Furthermore, chemogenetic excitation of direct pathway striatal neurons or inhibition of indirect pathway neurons induced impulsive decision making in the absence of dopamine agonists. These findings indicate that abnormal striatal activity plays a causal role in mediating ICD-like behaviors. Together, they provide a robust mouse model and insights into ICD pathophysiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awaf312 | DOI Listing |
Stroke
September 2025
Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).
Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.
Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.
J Exp Biol
September 2025
Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.
The adverse effects of Western diets (WD), high in both fat and simple sugars, which contribute to obesity and related disorders, have been extensively studied in laboratory rodents, but not in non-laboratory animals, which limits the scope of conclusions. Unlike laboratory mice or rats, non-laboratory rodents that reduce body mass for winter do not become obese when fed a high-fat diet. However, it is not known whether these rodents are also resistant to the adverse effects of WD.
View Article and Find Full Text PDFHypertension
September 2025
Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).
Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.
Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.
Microb Drug Resist
September 2025
Drug Discovery Research, Wockhardt Research Centre, Wockhardt Ltd., Chhatrapati Sambhajinagar, India.
Cefepime (FEP), a fourth-generation cephalosporin combined with tazobactam (TAZ), a β-lactamase inhibitor, is being developed by Wockhardt as a pharmacodynamically optimized fixed dose combination (FEP-2 g + TAZ-2 g) for the treatment of multidrug-resistant Gram-negative infections. To undertake an exposure-response analysis for establishing pharmacokinetic (PK)/pharmacodynamic (PD) targets, it is crucial to characterize the PK profile of compounds in surrogate compartments, such as plasma and lung, in clinically relevant animal infection models used to evaluate efficacy. In the current study, PKs of FEP and TAZ were assessed in plasma and in epithelial lining fluid (ELF) of neutropenic noninfected, lung-infected, and thigh-infected mice.
View Article and Find Full Text PDFCephalalgia
September 2025
Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.
View Article and Find Full Text PDF