98%
921
2 minutes
20
The development of human-interactive sensing displays (HISDs) that simultaneously detect and visualize stimuli is important for numerous cutting-edge human-machine interface technologies. Therefore, innovative device platforms with optimized architectures of HISDs combined with novel high-performance sensing and display materials are demonstrated. This study comprehensively reviews the recent advances in HISDs, particularly the device architectures that enable scaling-down and simplifying the HISD, as well as material designs capable of directly visualizing input information received by various sensors. Various HISD platforms for integrating sensors and displays are described. HISDs consist of a sensor and display connected through a microprocessor, and attempts to assemble the two devices by eliminating the microprocessor are detailed. Single-device HISD technologies are highlighted in which input stimuli acquired by sensory components are directly visualized with various optical components, such as electroluminescence, mechanoluminescence and structural color. The review forecasts future HISD technologies that demand the development of materials with molecular-level synthetic precision that enables simultaneous sensing and visualization. Furthermore, emerging HISDs combined with artificial intelligence technologies and those enabling simultaneous detection and visualization of extrasensory information are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202204964 | DOI Listing |
Accid Anal Prev
September 2025
Department of Traffic Engineering and Key Laboratory of Road and Traffic Engineering Ministry of Education, Tongji University, Shanghai 201804, China. Electronic address:
In future traffic environments dominated by highly autonomous vehicles (AVs), pedestrians may face challenges in accurately interpreting AV behavior, thereby potentially increasing the risk of pedestrian-AV interactions. External human-machine interfaces (eHMIs) have been proposed to facilitate communication between AVs and pedestrians; however, comprehensive evaluations using objective data from real-world interactions are limited. This study developed a systematic evaluation framework grounded in the ISO 9241-11 standard, integrating four key indicators: decision accuracy, comprehensibility, decision efficiency, and perceived safety.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.
View Article and Find Full Text PDFNeural Regen Res
September 2025
Department of Biomedical Engineering, Tianjin University School of Medicine, Tianjin, China.
Electroencephalography-based brain-computer interfaces have revolutionized the integration of neural signals with technological systems, offering transformative solutions across neuroscience, biomedical engineering, and clinical practice. This review systematically analyzes advancements in electroencephalography-based brain-computer interface architectures, emphasizing four pillars, namely signal acquisition, paradigm design, decoding algorithms, and diverse applications. The aim is to bridge the gap between technology and application and guide future research.
View Article and Find Full Text PDF