98%
921
2 minutes
20
Objectives: Systematically identifying cancer cell functional states, especially their associations, is key to understanding the pathogenesis of cancers.
Materials And Methods: Here, we systematically identified six cancer-related states, including epithelial-mesenchymal transition (EMT), immune response, epithelial differentiation, stress, G1/S and G2/M phases, in head and neck squamous cell carcinoma (HNSCC) based on single-cell RNA-sequencing (scRNA-seq).
Results And Conclusion: We defined the association patterns between these functional states and found the patterns were correlated with the state activity. Particularly, immune response and EMT were negatively, positively, or non-significantly correlated in samples with the highest immune response activity, the lowest activity of the two states, or with the highest EMT activity, respectively. Combining scRNA-seq data of immune cells and four independent HNSCC cohorts, we found the negative relationship between EMT and immune response was correlated with an activated immune microenvironment and a longer survival, while the non-significant relationship was correlated with an immunosuppressed microenvironment and a poor prognosis. Collectively, our results provide insight into the association patterns between functional states in HNSCC, and may facilitate the elucidation of the interactions between cancer cells and immune system during cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.oraloncology.2022.106110 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, Indian Institute of Techology Bombay, Powai, Mumbai 400076, India.
The direct α-α coupling of 3-pyrrolyl boron dipyrromethenes (BODIPYs) affords helical near-infrared (NIR)-active dimers in one step via a radical Pd-catalyzed process. X-ray analysis reveals Z-type helical packing stabilized by π-π stacking and hydrogen-bonding interactions. These dimers showed pronounced bathochromic absorption shifts compared to monomers and solvent-dependent charge-transfer bands up to 905 nm with fluorescence quenching.
View Article and Find Full Text PDFMol Cancer Ther
September 2025
Case Western Reserve University School of Medicine, Cleveland, OH, United States.
The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.
View Article and Find Full Text PDFPlant Genome
September 2025
Department of Agronomy, Iowa State University, Ames, Iowa, USA.
Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.
View Article and Find Full Text PDF