98%
921
2 minutes
20
The substrate is the key environmental factor that affects the growth, survival, population and distribution of dwelling mollusks in mudflat settings. To clarify the effect of the substrate grain size on soft substrate preference, burrowing ability and behavior during the selection process of juvenile Meretrix meretrix, four different grain size substrates (coarse sand, medium sand, fine sand, and natural substrate) were set up for comparison. The results indicated that: (1) the burrowing ability of juvenile specimens in fine sand was the strongest; (2) the degree (from high to low) of the juvenile’s preference for the four substrates was in the order of fine sand > natural substrate > medium sand > coarse sand; and (3) the selection process of the substrate by the juveniles could be divided into four stages: preparation, selection, burrowing and end stages. These stages showed the behavioral characteristics of a longer selection time and higher percentage of movement in coarse sand. Therefore, our results demonstrated that sea areas or ponds with fine sand as the main component are more suitable for stock enhancement with M. meretrix. These results provide basic data for habitat selection and suitability evaluations for the aquaculture of M. meretrix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405232 | PMC |
http://dx.doi.org/10.3390/ani12162094 | DOI Listing |
Environ Res
September 2025
Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China; National Institute of Health Data Science, Peking University, Beijing 100191, China; Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing 1
Objective: The impact of desert-originated dust has been underestimated in fine particulate matters (PM)-related disease burden studies. This study aimed to assess the association of long-term dust PM exposure and all-cause mortality among older adults in China.
Methods: A cohort study using electronic health records (2010-2020) across Weinan, a city in northwest China, which experiences persistently high PM levels and frequent sand and dust storms, included 1,553,724 adults aged ≥45 years.
J Contam Hydrol
September 2025
School of Marine Sciences, Sun Yat-sen University, 135 Xin'gang RD.W., Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China. Electronic address:
We systematically investigated DNEs throughout imbibition processes, specifically evaluating: (1) the temporal correspondence between DNE development and changes in water saturation/capillary pressure, and (2) the dominant factors governing DNE magnitude during imbibition. The signal drift during extended testing, and the gravitational effect on both the capillary pressure and water saturation were eliminated. The results indicate that, when water saturation was below a threshold value (∼0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Department of Materials Science and Engineering, Missouri University of Science and Technology, 1400 N. Bishop, Rolla, MO, 65409, USA.
Plastic waste poses environmental and health risks, highlighting the need for sustainable reuse in construction. This study introduces a novel solution to plastic waste utilization by: (1) developing rheological testing equipment from plastic using 3D printing technology, and (2) enhancing the rheological performance of self-compacting mortar (SCM) with 3D-printed plastic fine aggregates (3DPFA). SCM mixtures incorporating 5%, 10%, 15%, and 20% 3DPFA as a replacement for natural sand were prepared and tested to evaluate fresh, mechanical, and thermal properties through mini-slump flow, T20 spread time, J-ring flow, V-funnel, compressive strength, UPV, and thermal conductivity tests.
View Article and Find Full Text PDFSci Prog
September 2025
Department of Construction and Building Engineering, High Institute of Engineering, October 6 City, Egypt.
The solid waste generated by the waste sanitary ware (WSW) sector is of considerable magnitude on a global scale. Recycling ceramic waste is an essential practice that ensures its proper disposal. Therefore, the objective of this research endeavor was to investigate the effects of replacing sand with WSW on different characteristics of foamed concrete (FC), such as its thermal properties, transportability, freshness, and mechanical strengths.
View Article and Find Full Text PDFSci Total Environ
August 2025
Space Information and Big Earth Data Research Center, School of Computer Science and Technology, Qingdao University, Qingdao 266071, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China. Electronic address: zhang
Land cover (LC) change is a crucial indicator reflecting the interaction between human activities and ecological environment. In semi-arid and arid regions like the Mongolian Plateau (MP), LC change analysis is particularly meaningful in shaping biodiversity, agricultural and grassland environment, and climate regulation, but long-term spatiotemporal dynamics of LC change in MP remain uncertain. This study employed an intensity analysis approach to investigate LC changes over the MP from 1990 to 2020 by using a fine-scale 30 m resolution land cover dataset generated from multi-source satellite images.
View Article and Find Full Text PDF