Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastic waste poses environmental and health risks, highlighting the need for sustainable reuse in construction. This study introduces a novel solution to plastic waste utilization by: (1) developing rheological testing equipment from plastic using 3D printing technology, and (2) enhancing the rheological performance of self-compacting mortar (SCM) with 3D-printed plastic fine aggregates (3DPFA). SCM mixtures incorporating 5%, 10%, 15%, and 20% 3DPFA as a replacement for natural sand were prepared and tested to evaluate fresh, mechanical, and thermal properties through mini-slump flow, T20 spread time, J-ring flow, V-funnel, compressive strength, UPV, and thermal conductivity tests. Results revealed that incorporating 3DPFA significantly enhanced workability and flow characteristics. The mini-slump spread increased progressively with higher 3DPFA content, showing a 6% improvement at 20% replacement compared to the control. T20 flow time decreased markedly, reaching 2 s at 20% 3DPFA, indicating improved flowability. Similarly, J-ring tests demonstrated enhanced passing ability, with increased spread and reduced height differences, maintaining slump flow differences within acceptable limits. V-funnel flow time reduced from 7 s in the control mix to 5 s with 20% 3DPFA, confirming improved viscosity and flow dynamics. Furthermore, thermal conductivity showed a substantial reduction of up to 22%. These findings highlight a promising pathway for plastic waste valorization in the construction sector.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-025-36902-6DOI Listing

Publication Analysis

Top Keywords

plastic waste
16
20% 3dpfa
12
3d-printed plastic
8
self-compacting mortar
8
mechanical thermal
8
thermal conductivity
8
flow time
8
flow
7
plastic
6
3dpfa
6

Similar Publications

Plastics are widely used materials composed of polymers and various additives to achieve specific properties. Their composition is often highly complex, particularly in post-consumer plastic waste. As mechanical recycling faces increasing limitations, chemistry-driven strategies are attracting growing interest to improve plastic recovery.

View Article and Find Full Text PDF

Photodegradation of PET plastics produces persistent compounds that accumulate in sediments.

Mar Pollut Bull

September 2025

Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Converging Research Institute, Daegu 41566, Republic of Korea. Electronic address:

Polyethylene terephthalate (PET) is one of the most widely used plastics, particularly in packaging and textiles. Although PET is widely used in consumer products, only 10-28 % is recycled. Most PET waste is not properly managed.

View Article and Find Full Text PDF

Risk Assessment from Potential Exposure to Tetrabromobisphenol A (TBBPA) from Its Use in Electronics.

Food Chem Toxicol

September 2025

Science Strategies, LLC, PMB 1111, 2795 E. Cottonwood Parkway, Suite 300, Salt Lake City, UT 84121.

Tetrabromobisphenol A (TBBPA) is the most extensively used brominated flame retardant worldwide, primarily employed reactively in printed circuit boards and additively in plastic housings of electronic equipment. This study systematically evaluates human exposure to TBBPA from electronic devices and characterizes associated risks. A targeted literature review of 55 peer-reviewed studies published over the past 25 years was conducted, focusing on global TBBPA occurrence in environmental media, occupational and residential settings, and biological matrices.

View Article and Find Full Text PDF

The use of highly flammable materials such as foams, resins, and plastics has led to an increase in the frequency and severity of urban fires worldwide. To address this issue, this study developed a high-specific-surface-area mesoporous metal-organic framework (Fe-MOFs) with heat trapping and smoke adsorption. The Fe-MOFs, zinc tailings (ZTs), piperazine pyrophosphate (PAPP), and sodium lignosulfonate (LS) were used to modify rigid polyurethane foam (RPUF).

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a ubiquitous polymer with a lack of viable waste management solutions besides mechanical recycling, incineration, and landfilling. Herein, we demonstrate a chemical upcycling of PET waste into materials for CO capture via aminolysis. The aminolysis reaction products-a bis-aminoamide (BAETA) and oligomers-exhibit high CO capture capacity up to 3.

View Article and Find Full Text PDF