98%
921
2 minutes
20
Two-dimensional conductive metal-organic frameworks (2D c-MOFs) are a family of highly tunable and electrically conducting materials that can be utilized in optoelectronics. A major issue of 2D c-MOFs for photodetection is their poor charge separation and recombination dynamics upon illumination. This study demonstrates a Cu (HHTP) /ZnO type-II heterojunction ultraviolet (UV) photodetector fabricated by layer-by-layer (LbL) deposition, in which the charge separation of photogenerated carriers is enhanced. At optimized MOF layer cycles, the device achieves a responsivity of 78.2 A/W and detectivity of 3.8×10 Jones at 1 V. Particularly, the device can be operated in the self-powered mode with an ultrafast response time of 70 μs, which is the record value for MOF-based photodetectors. In addition, even after 1000-time bending of 180°, the flexible device maintains stable performance. This flexible MOF-based UV photodetector with anti-fatigue and anti-bending properties provides strong implication to wearable optoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202201705 | DOI Listing |
ACS Nano
September 2025
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Lateral homojunction photodetectors (PDs) offer high responsivity and fast response, yet challenges in tailoring carrier concentrations in two-dimensional transition-metal dichalcogenides (TMDs) have limited their implementation. Here, we demonstrate a high-performance self-powered monolithic lateral p-i-n homojunction PD using multilayer WS. To our knowledge, this study is the first report of achieving tunable, multilevel compensation doping via WO formation using only time-controlled and region-selective ultraviolet (UV)/ozone oxidation.
View Article and Find Full Text PDFNat Commun
September 2025
State Ley Laboratory of Integrated Optoelectronics, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, School of Physics, Northeast Normal University, Changchun, China.
Single-pixel imaging is emerging as a promising alternative to traditional focal plane array technologies, offering advantages in compactness and cost-effectiveness. However, the lack of solar-blind photodetectors combining fast-response and high-sensitivity has constrained their application in the deep ultraviolet spectrum. This work introduces a self-powered solar-blind photodetector based on a heterostructure comprising a GaO photosensitive layer, an AlN barrier layer, and an N-polar AlGaN:Si contact layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
Organic photodetectors (OPDs) have great potential in optical communication and biomedical imaging. Wavelength-selective response can be achieved by employing filter-free OPDs with various organic semiconductors. Herein, solution-processed OPDs are fabricated with typical electron acceptors (i.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) and Al-doped BxAl1-xN films were grown on Si(100) substrates by means of a radio frequency magnetron sputtering technique. These films have been fabricated into hBN/Si and BAlN/Si heterojunctions, respectively. The heterojunction of hBN/Si exhibited an excellent response to vacuum ultraviolet (VUV) light at 185 nm.
View Article and Find Full Text PDF