98%
921
2 minutes
20
Diabetic nephropathy (DN) is the most important cause of end-stage renal disease with a poorer prognosis and high economic burdens of medical treatments. It is of great research value and clinical significance to explore potential gene targets of renal tubulointerstitial lesions in DN. To properly identify key genes associated with tubulointerstitial injury of DN, we initially performed a weighted gene coexpression network analysis of the dataset to screen out two nonconserved gene modules (dark orange and dark red). The regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, PI3K-Akt signaling pathway, p38MAPK cascade, and Th1 and Th2 cell differentiation were primarily included in Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two modules. Next, 199 differentially expressed genes (DEGs) were identified via the limma package. Then, the GO annotation and KEGG pathways of the DEGs were primarily enriched in extracellular matrix (ECM) organization, epithelial cell migration, cell adhesion molecules (CAMs), NF-kappa B signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis showed that in the DN group, the interaction of ECM-receptor, CAMs, the interaction of cytokine-cytokine receptor, and complement and coagulation cascade pathways were significantly activated. Eleven key genes, including ALB, ANXA1, ANXA2, C3, CCL2, CLU, EGF, FOS, PLG, TIMP1, and VCAM1, were selected by constructing a protein-protein interaction network, and expression validation, ECM-related pathways, and glomerular filtration rate correlation analysis were performed in the validated dataset. The upregulated expression of hub genes ANXA2 and FOS was verified by real-time quantitative PCR in HK-2 cells treated with high glucose. This study revealed potential regulatory mechanisms of renal tubulointerstitial damage and highlighted the crucial role of extracellular matrix in DN, which may promote the identification of new biomarkers and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391162 | PMC |
http://dx.doi.org/10.1155/2022/7907708 | DOI Listing |
J Mol Histol
September 2025
Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFBr J Cancer
September 2025
School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.
Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.
Commun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Tsinghua University, Beijing, China.
The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.
View Article and Find Full Text PDF